含长周期有序堆垛结构镁合金变形机理的 透射电子显微学研究

邵晓宏 # ,彭珍珍#,靳千千,马秀良*

含长周期有序堆垛结构镁合金变形机理的 透射电子显微学研究

邵晓宏 # ,彭珍珍#,靳千千,马秀良*

(1.中国科学院金属研究所沈阳材料科学国家研究中心,辽宁 沈阳 110016;2. 河北科技大学材料科学与工程学院,河北省材料近净成形技术重点实验室,河北 石家庄 050018 ;3.广西科技大学电子工程学院 先进物质结构研究中心,广西 柳州 545006)

摘 要 兼具高强度、高塑性、高稳定性的镁合金在航空、航天及交通运输等行业具有重大战略需求,也是当前基础科学研究的一大热点。对微观结构的深入理解,尤其是在原子尺度对相结构及变形机理的综合认识是材料优化设计的根本。因此,在原子尺度深入解析新型高性能镁合金微观结构,阐明变形机理与性能的关系,能够为镁合金的按需设计和实际应用提供实验和理论依据。本文主要综述了含长周期有序堆垛(long-period stacking ordered,LPSO)结构的镁合金变形机理方面的进展,主要包括:LPSO结构的扭折变形形成机理及该镁合金的强韧化机制,LPSO结构与孪晶的交互作用,扭折与变形孪晶协同提高塑性的机理,LPSO间孪晶的交汇行为等,并总结前期研究且对未来的研究方向进行了展望。

关键词 镁合金;长周期有序堆垛结构;透射电镜;扭折;变形孪晶

中图分类号:TB31;TG111;TG115;TG146 文献标识码:A Doi:10.3969/j.issn.1000-6281.2025.02.012

 

Unravelling deformation mechanism of magnesium alloy with long period stacking ordered structure at atomic level: A review

SHAO Xiaohong 1 #,PENG Zhenzhen1,2 #,JIN Qianqian1,3,MA Xiuliang1 *

(1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang Liaoning 110016;2. Hebei Key Laboratory of Material Near-Net Forming Technology, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang Hebei 050018;3. Center for the Structure of Advanced Matter, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou Guangxi 545006, China)

Abstract Magnesium alloys with high strength, excellent plasticity, and remarkable stability are crucial in the aviation, aerospace, and transportation industries. They are also of significant interest in fundamental scientific research. A deep understanding of deformation mechanisms, particularly at the atomic scale, is essential for optimizing material design. Thus, a detailed examination of the microstructural evolution in high-performance magnesium alloy at the atomic level, and the clarification of the correlation between the deformation mechanism and performance, can provide both theoretical and experimental foundations for the optimal practical application and design of magnesium alloys. This paper summarizes the advancements in the deformation mechanisms of magnesium alloys with long-period stacking ordered (LPSO) structure. Key topics include the deformation kinking of LPSO structure formation and its strengthening and toughening mechanism, the coupling effect of deformation kinking and deformation twinning on improving plasticity, the interaction between LPSO structure and deformation twinning, and the intersection behavior of deformation twinning between LPSO and/or stacking faults. This paper also summarizes previous research and suggests potential future research direction.

Keywords magnesium alloy; long period stacking ordered structure; transmission electron microscopy; deformation kink; deformation twin