[1] INOUE A, KAWAMURA Y, MATSUSHITA M, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system [J]. Journal of Materials Research, 2001, 16(7): 1894-1900.
[2] KAWAMURA Y, HAYASHI K, INOUE A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa [J]. Materials Transactions, 2001, 42(7): 1172-1176.
[3] KAWAMURA Y, KASAHARA T, IZUMI S, et al. Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure [J]. Scripta Materialia, 2006, 55: 453-456.
[4] YAMASAKI M, ANAN T, YOSHIMOTO S, et al. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate [J]. Scripta Materialia, 2005, 53(7): 799-803.
[5] YOSHIMOTO S, YAMASAKI M, KAWAMURA Y. Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure [J]. Materials Transactions, 2006, 47: 959-965.
[6] KAWAMURA Y, YAMASAKI M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure [J]. Materials Transactions, 2007, 48(11): 2986-2992.
[7] ITOI T, TAKAHASHI K, MORIYAMA H, et al. A high-strength Mg–Ni–Y alloy sheet with a long-period ordered phase prepared by hot-rolling [J]. Scripta Materialia, 2008, 59: 1155-1158.
[8] ABE E, KAWAMURA Y, HAYASHI K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-ontrast STEM [J]. Acta Materialia, 2002, 50: 3845-3857.
[9] SHAO X H, YANG H J, DE HOSSON J T M, et al. Microstructural characterization of long-period stacking ordered phases in Mg97Zn1Y2 (at.%) alloy [J]. Microscopy And Microanalysis, 2013, 19(6): 1575-1580.
[10] ZHU Y M, MORTON A J, NIE J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys [J]. Acta Materialia, 2010, 58(8): 2936-2947.
[11] KIM J K, KO W S, SANDLOBES S, et al. The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy [J]. Acta Materialia, 2016, 112: 171-183.
[12] ABE E, ONO A, ITOI T, et al. Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg-Zn-Y alloy [J]. Philosophical Magazine Letters, 2011, 91(10): 690-696.
[13] ZHU Y M, MORTON A J, NIE J F. Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys [J]. Acta Materialia, 2012, 60(19): 6562-6572.
[14] EGUSA D, ABE E. The structure of long period stacking/order Mg-Zn-RE phases with extended non-stoichiometry ranges [J]. Acta Materialia, 2012, 60(1): 166-178.
[15] YOKOBAYASHI H, KISHIDA K, INUI H, et al. Enrichment of Gd and Al atoms in the quadruple close packed planes and their in-plane long-range ordering in the long period stacking-ordered phase in the Mg–Al–Gd system [J]. Acta Materialia, 2011, 59(19): 7287-7299.
[16] JIN Q Q, SHAO X H, HU X B, et al. New polytypes of long-period stacking ordered structures in a near-equilibrium Mg97Zn1Y2 alloy [J]. Philosophical Magazine Letters, 2017, 97(5): 180-187.
[17] MI S B, JIN Q Q. New polytypes of long-period stacking ordered structures in Mg-Co-Y alloys [J]. Scripta Materialia, 2013, 68(8): 635-638.
[18] JIN Q Q, SHAO X H, HU X B, et al. New polytypes of LPSO structures in an Mg-Co-Y alloy [J]. philosophical Magazine, 2017, 97(1): 1-16.
[19] JIN Q Q, SHAO X H, PENG Z Z, et al. Crystallographic account of an ultra-long period stacking ordered phase in an Mg88Co5Y7 alloy [J]. Journal of Alloys and Compounds, 2017, 693: 1035-1038.
[20] HAGIHARA K, KINOSHITA A, FUKUSUMI Y, et al. High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase [J]. Materials Science and Engineering: A, 2013, 560(0): 71-79.
[21] OKAYASU M, TAKEUCHI S, MATSUSHITA M, et al. Mechanical properties and failure characteristics of cast and extruded Mg97Y2Zn1 alloys with LPSO phase [J]. Materials Science and Engineering: A, 2016, 652: 14-29.
[22] TAHREEN N, CHEN D L. A critical review of Mg-Zn-Y series alloys containing I, W, and LPSO phases [J]. Advanced Engineering Materials, 2016, 18(12): 1983-2002.
[23] XU C, NAKATA T, QIAO X, et al. Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy [J]. Scientific Reports, 2017, 7: 40846.
[24] XU C, NAKATA T, QIAO X G, et al. Ageing behavior of extruded Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr (wt.%) alloy containing LPSO phase and gamma ' precipitates [J]. Scientific Reports, 2017, 7: 43391.
[25] CHEN R, SANDLOBES S, ZEHNDER C, et al. Deformation mechanisms, activated slip systems and critical resolved shear stresses in an Mg-LPSO alloy studied by micro-pillar compression [J]. Materials & Design, 2018, 154: 203-216.
[26] HAGIHARA K, LI Z X, YAMASAKI M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys [J]. Acta Materialia, 2019, 163: 226-239.
[27] HAGIHARA K, KINOSHITA A, SUGINO Y, et al. Plastic deformation behavior of Mg89Zn4Y7 extruded alloy composed of long-period stacking ordered phase [J]. Intermetallics, 2010, 18(5): 1079-1085.
[28] MATSUDA M, II S, KAWAMURA Y, et al. Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy [J]. Materials Science and Engineering A, 2004, 386(1/2): 447-452.
[29] SHAO X H, YANG Z Q, MA X L. Interplay between deformation twins and basal stacking faults enriched with Zn/Y in Mg97Zn1Y2 alloy [J]. Philosophical Magazine Letters, 2014, 94(3): 150-156.
[30] SHAO X H, ZHENG S J, CHEN D, et al. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy [J]. Scientific Reports, 2016, 6: 30096.
[31] SHAO X H, PENG Z Z, JIN Q Q, et al. Atomic scale characterizing interaction between {10-13} twin and stacking faults with solute atoms in an Mg-Zn-Y alloy [J]. Materials Science and Engineering A, 2017, 700: 468-472.
[32] SHAO J B, CHEN Z Y, CHEN T, et al. The interaction between {10(1)over-bar2} twinning and long-period stacking ordered (LPSO) phase during hot rolling and annealing process of a Mg-Gd-Y-Zn-Zr Alloy [J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2021, 52(2): 520-530.
[33] MAYAMA T, AGNEW S R, HAGIHARA K, et al. α-Mg/LPSO (long-period stacking ordered) phase interfaces as obstacles against dislocation slip in as-cast Mg-Zn-Y alloys [J]. International Journal of Plasticity, 2022, 154: 103294.
[34] PENG Z Z, SHAO X H, LIANG Z M, et al. Synergetic deformation mechanisms in an Mg-Zn-Y-Zr alloy with intragranular LPSO structures [J]. Journal of Magnesium and Alloys, 2023, 11(5): 1754-1768.
[35] OROWAN E. A type of plastic deformation new in metals [J]. Nature, 1942, 149(3788): 643-644.
[36] SHAO X H, YANG Z Q, MA X L. Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure [J]. Acta Materialia, 2010, 58(14): 4760-4771.
[37] 李东伟, 孙威. Mg97Zn1Y2(at.%)合金中14H型长周期相室温拉伸变形结构电子显微学表征 [J]. 电子显微学报, 2020, 39(6): 656-662.
[38] CHEN T, CHEN Z, SHAO J, et al. Interactions between kinking and {10-12} twinning in a Mg–Zn-Gd alloy containing long period stacking ordered (LPSO) phase [J]. Materials Science and Engineering: A, 2019, 767: 138418.
[39] 邵晓宏, 彭珍珍, 靳千千, 等. 镁合金LPSO/SFs结构间{10-12}孪晶交汇机制的原子尺度研究 [J]. 金属学报, 2023, 59(4): 556-566.
[40] JEONG J, ALFREIDER M, KONETSCHNIK R, et al. In-situ TEM observation of {10(1)over-bar2} twin-dominated deformation of Mg pillars: Twinning mechanism, size effects and rate dependency [J]. Acta Materialia, 2018, 158: 407-421.
[41] LÜ M, JIN Q Q, SHAO X H, et al. The aging behaviour of a Mg-10Gd-3Y-1.0Zn-0.5Zr (wt.%) alloy with long-period stacking ordered phase at 275℃ [J]. philosophical magazine, 2022, 103: 315-320.
[42] PENNYCOOK S. Z-contrast STEM for materials science [J]. Ultramicroscopy, 1989, 30(1/2): 58-69.
[43] WANG B, XIONG S, LIU Y. Tensile fracture of as-cast and hot rolled Mg-Zn-Y alloy with long-period stacking phase [J]. Transactions of Nonferrous Metals Society of China, 2010, 20: 488-492.
[44] YAMASAKI S, TOKUZUMI T, LI W, et al. Kink formation process in long-period stacking ordered Mg-Zn-Y alloy [J]. Acta Materialia, 2020, 195: 25-34.
[45] HAGIHARA K, YAMASAKI M, KAWAMURA Y, et al. Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands [J]. Materials Science and Engineering: A, 2019, 763: 138163.
[46] SOMEKAWA H, ANDO D, HAGIHARA K, et al. Intrinsic kink bands strengthening induced by several wrought-processes in Mg-Y-Zn alloys containing LPSO phase [J]. Materials Characterization, 2021, 179: 111348.
[47] NAKASUJI Y, SOMEKAWA H, YUASA M, et al. Quantitative kink boundaries strengthening effect of Mg-Y-Zn alloy containing LPSO phase [J]. Materials Letters, 2021, 292: 129625.
[48] TAKAGI K, MAYAMA T, MINE Y, et al. Extended ductility due to kink band formation and growth under tensile loading in single crystals of Mg-Zn-Y alloy with 18R-LPSO structure [J]. Journal of Alloys and Compounds, 2019, 806: 1384-1393.
[49] HAGIHARA K, UEYAMA R, YAMASAKI M, et al. Surprising increase in yield stress of Mg single crystal using long-period stacking ordered nanoplates [J]. Acta Materialia, 2021, 209: 116797.
[50] HAGIHARA K, HAYAKAWA K, MIYOSHI K. Inducement of kink-band formation in directionally solidified Mg/Mg17Al12 eutectic alloy-Inspired by the deformation behavior of the long-period stacking ordered (LPSO) phase [J]. Materials Science and Engineering: A, 2020, 798: 140087. [51] HAGIHARA K, MIYOSHI K. Kink-band formation in directionally solidified Mg/Mg2Yb and Mg/Mg2Ca eutectic alloys with Mg/Laves-phase lamellar microstructure [J]. Journal of Magnesium and Alloys, 2022, 10(2): 492-500. [52] SHAO X H, PENG Z Z, JIN Q Q, et al. Atomic-scale segregations at the deformation-induced symmetrical boundary in an Mg-Zn-Y alloy [J]. Acta Materialia, 2016, 118: 177-186.
[53] PENG Z Z, SHAO X H, JIN Q Q, et al. Dislocation configuration and solute redistribution of low angle kink boundaries in an extruded Mg–Zn–Y–Zr alloy [J]. Materials Science and Engineering A, 2017, 687: 211-220.
[54] SHAO X H, YANG Z Q, MA X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure [J]. Acta Materialia, 2010, 58(14): 4760-4771.
[55] SU N, XUE X, ZHOU H, et al. Effects of nanoprecipitates and LPSO structure on deformation and fracture behaviour of high-strength Mg-Gd-Y-Zn-Mn alloys [J]. Materials Characterization, 2020, 165: 110396.
[56] WU J, IKEDA K-I, SHI Q, et al. Kink boundaries and their role in dynamic recrystallisation of a Mg-Zn-Y alloy [J]. Materials Characterization, 2019, 148: 233-242.
[57] LUAN S, ZHANG L, CHEN L, et al. Plastic contribution via DRX induced by kink and twin in a hot compressed Mg-Gd-Zn-Mn alloy with 14H LPSO [J]. Materials Science and Engineering: A, 2023, 873: 145022.
[58] TOKUZUMI T, MITSUHARA M, YAMASAKI S, et al. Role of disclinations around kink bands on deformation behavior in Mg–Zn–Y alloys with a long-period stacking ordered phase [J]. Acta Materialia, 2023, 248: 118785.
[59] XIE J, ZHANG J, ZHANG Z, et al. New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase [J]. Corrosion Science, 2022, 198: 110163.
[60] SHAO X H, PENG Z Z, JIN Q Q, et al. Unravelling the local ring-like atomic pattern of twin boundary in an Mg-Zn-Y alloy [J]. Philosophical Magazine, 2019, 99(3): 306-317.
[61] LI K, ZHUANG Y, ZHAO L, et al. In-situ observation of the interaction of {10-12}a deformation twinning with 18R long period stacking ordered precipitates in an Mg-5Gd-3.5Ga (at.%) as-cast alloy [J]. Scripta Materialia, 2022, 210: 114392.
[62] 汪涛, 孙威, 王子荣, 等. Mg-Y-Nd-Zn合金中LPSO的存在对孪晶形成的影响 [J]. 电子显微学报, 2016, 35(5): 393-398.
[63] KISHIDA K, INOUE A, YOKOBAYASHI H, et al. Deformation twinning in a Mg–Al–Gd ternary alloy containing precipitates with a long-period stacking-ordered (LPSO) structure [J]. Scripta Materialia, 2014, 89: 25-28.
[64] SHAO X H, JIN Q Q, ZHOU Y T, et al. Basal shearing of twinned stacking faults and its effect on mechanical properties in an Mg–Zn–Y alloy with LPSO phase [J]. Materials Science and Engineering A, 2020, 779: 139109.
[65] WANG J, BEYERLEIN I J. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (HCP) crystals [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(2): 024002.
[66] XU W, YU J, JIA L, et al. Deformation behavior of Mg-13Gd-4Y-2Zn-0.5Zr alloy on the basis of LPSO kinking, dynamic recrystallization and twinning during compression-torsion [J]. Materials Characterization, 2021, 178: 111215.
[67] YU Q, WANG J, JIANG Y Y, et al. Twin-twin interactions in magnesium [J]. Acta Materialia, 2014, 77: 28-42.
[68] YU Q, WANG J, JIANG Y, et al. Co-zone {10-12} twin interaction in magnesium single crystal [J]. Materials Research Letters, 2014, 2(2): 82-88.
[69] WANG B, LIU H, ZHANG Y, et al. Effect of grain size on twinning behavior of pure titanium at room temperature [J]. Materials Science and Engineering: A, 2021, 827: 142060.
[70] EL KADIRI H, KAPIL J, OPPEDAL A L, et al. The effect of twin-twin interactions on the nucleation and propagation of {10-12} twinning in magnesium [J]. Acta Materialia, 2013, 61(10): 3549-3563.
[71] SHI D, LIU T, HOU D, et al. The effect of twin–twin interaction in Mg-3Al-1Zn alloy during compression [J]. Journal of Alloys and Compounds, 2016, 685: 428-435.
[72] LENTZ M, RISSE M, SCHAEFER N, et al. Strength and ductility with {10(1)over-bar1} - {10(1)over-bar2} double twinning in a magnesium alloy [J]. Nature Communications, 2016, 7: 11068.