SnO2-ZnO相图中各相结构演化的 透射电子显微学研究
曹宝宝#*,王文茹#,徐博家,江 松
(西南交通大学材料科学与工程学院,四川 成都 610031)
摘 要 SnO2-ZnO是重要的透明半导体氧化物体系,本文综述了从2012年发现的一种SnO2(ZnO:Sn)n超晶格纳米线新相出发,先后设计制备ZnO-SnO2(ZnO:Sn)n,SnO2(ZnO:Sn)n-Zn2SnO4和Zn2SnO4-SnO2三种不同的纳米异质结结构,并运用透射电子显微学方法厘清了各相之间的结构演化和晶体学生长关系,为该体系内各相在未来的表界面设计和实际应用奠定了基础。
关键词 SnO2-ZnO;生长关系;透射电子显微学;超晶格
中图分类号:TB34;0766+.1;0781;0792;TG115.21+5.3 文献标识码:A Doi:10.3969/j.issn.1000-6281.2025.02.011
Structural evolution study in SnO2-ZnO system via transmission electron microscopy
CAO Baobao#*,WANG Wenru#, XU Bojia,JIANG Song
(School of Materials Science and Technology, Southwest Jiaotong University, Chengdu Sichuan 610031,China)
Abstract SnO2-ZnO is an important branch of transparent conducting oxides, which includes ZnO, Zn2SnO4, SnO2, and a new phase SnO2(ZnO:Sn)n found in 2012. Three types of heterojunctions were fabricated between these four phases: ZnO-SnO2(ZnO:Sn)n,SnO2(ZnO:Sn)n-Zn2SnO4 and Zn2SnO4-SnO2. Transmission electron microscopy, combined with crystal structure modeling, was used to study the microstructural evolution and epitaxial growth relationships within these heterostructures. It was found that the Sn-O octahedral layer played a crucial role in the phase transition process between neighboring phases. The results in this work provide valuable insights for the design of new growth strategies and the exploration of properties within this material system.
Keywords ZnO-SnO2; growth relationship; transmission electron microscopy; superlattice
[1] NOMURA K, OHTA H, UEDA K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor [J]. Science, 2003, 300(5623): 1269-1272.
[2] KANG W J, AHN C H, YUN M G, et al. Expedient floating process for ultra-thin InGaZnO thin-film-transistors and their high bending performance [J]. RSC Advances, 2016, 6(68): 63418-63424.
[3] KIM Y K, AHN C H, YUN M G, et al. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness [J]. Scientific Reports, 2016, 6(1): 26287-26287.
[4] HOEL C A, MASON T O, GAILLARD J F, et al. Transparent conducting oxides in the ZnO-In2O3-SnO2 system [J]. Cheminform, 2010, 41(34): 3569–3579.
[5] MIHAIU S, TOADER A, ATKINSON I, et al. Advanced ceramics in the SnO2–ZnO binary system [J]. Ceramics International, 2015, 41(3): 4936-4945.
[6] SHA R, BASAK A, MAITY P C, et al. ZnO nano-structured based devices for chemical and optical sensing applications [J]. Sensors and Actuators Reports, 2022, 4: 100098-100117.
[7] XIONG L, GUO Y, WEN J, et al. Review on the application of SnO2 in perovskite solar cells [J]. Advanced Functional Materials, 2018, 28(35): 1802757-1802775.
[8] QI Y, MEADOR W E, XIONG J, et al. Structural, optical, photocatalytic, and optoelectronic properties of Zn2SnO4 nanocrystals prepared by hydrothermal method [J]. Nanotechnology, 2021, 32(14): 145702-145716.
[9] CAO B, SHI T, ZHENG S, et al. New polytypoid SnO2(ZnO:Sn)m nanowire: Characterization and calculation of its electronic structure [J]. Journal of Physical Chemistry C, 2012, 116(8): 5009-5013.
[10] JIANG S, GE B, XU B, et al. In situ growth of ZnO/SnO2(ZnO:Sn)m binary/superlattice heterojunction nanowire arrays [J]. CrystEngComm, 2018, 20: 556–562.
[11] TAN J, JIANG S, GE B, et al. Synthesis and characterization of high-purity SnO2(ZnO:Sn)m superlattice nanowire arrays with broad-spectrum emissions [J]. CrystEngComm, 2020, 22: 5355–5562.
[12] HUANG J, XU B, GE B, et al. Novel SnO2(ZnO:Sn)m superlattice nanoparticles for ultra-low ppb-level H2S detection [J]. CrystEngComm, 2022, (22/23/24): 4021–4029.
[13] 徐博家. Zn-Sn-O系新型纳米异质结的制备与结构表征 [D]. 成都:西南交通大学, 2019.
[14] GARLING J, ASSENMACHER W, SCHMID H, et al. Real structure of (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series ARO3(ZnO)m with ordered site occupation [J]. Journal of Solid State Chemistry, 2018, 258: 809-817.
[15] EICHHORN S, SCHMID H, ASSENMACHER W, et al. Homologous compounds of type ARO3(ZnO)m in the system Ga-Sn-Zn-O [J]. Journal of Solid State Chemistry, 2017, 246: 214-220.
[16] EICHHORN S, MADER W. Structure and optical properties of [In1-2xSnxZnx]GaO3(ZnO)m [J]. Journal of Solid State Chemistry, 2016, 233: 75-81. [17] XU B, CAO B. Unveiling hidden epitaxial interfaces in novel SnO2/Zn2SnO4 core–shell nanowires with a multi-domain shield via cross-sectional transmission electron microscopy [J]. CrystEngComm, 2019, 21(12): 1895–1902.
[18] 曹宝宝, 郭可信. 单斜η-Al11Cr2相的确定 [J]. 电子显微学报, 2007, 26(4): 270-275.
[19] 曹宝宝, 郭可信. Al-Cr二元合金中的一个新正交相O-A11Cr2 [J]. 电子显微学报, 2008, 27(2): 179-184.
[20] 胡捷,王佳恒,李凯旋,等. 超薄SnO2/Ga2O3/SnO2异质结构的原子尺度表征与热稳定性研究 [J]. 电子显微学报, 2022, 41(4): 399-406.
[21] 马龙辉,贾双凤,郑赫,等. α-Fe2O3的原子尺度界面结构与演变 [J]. 电子显微学报, 2021, 40(5): 529-536.
[22] 李祥,姚婷婷,江亦潇,等. TiO2薄膜的相结构调控与表征 [J]. 电子显微学报, 2022, 41(2): 111-116.
[23] 李祥,王晶,李兴华,等. ZnFe2O4/SnS2异质结的构建及光催化性能研究 [J]. 电子显微学报, 2022, 41(3): 226-233.