[1] PETFORD-LONG A K, CHAPMAN J N. Lorentz microscopy[M]. Magnetic Microscopy of Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 67-86.
[2] PHATAK C, PETFORD-LONG A K, De GRAEF M. Recent advances in Lorentz microscopy[J]. Current Opinion in Solid State and Materials Science, 2016, 20(2): 107-114.
[3] GRUNDY P J, TEBBLE R S. Lorentz electron microscopy[J]. Advances in Physics, 1968, 17(66): 153-242.
[4] TONOMURA A. Applications of electron holography[J]. Reviews of Modern Physics, 1987, 59(3): 639-669.
[5] MIDGLEY P A, DUNIN-BORKOWSKI R E. Electron tomography and holography in materials science[J]. Nature Materials, 2009, 8(4): 271-280.
[6] CHAPMAN J N, McFADYEN I R, McVITIE S. Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures[J]. IEEE Transactions on Magnetics, 1990, 26(5): 1506-1511.
[7] CAMPANINI M, NASI L, ALBERTINI F, et al. Disentangling nanoscale electric and magnetic fields by time-reversal operation in differential phase-contrast STEM[J]. Applied Physics Letters, 2020, 117(15): 154102.
[8] LIU Y, FERRIER R P. Quantitative evaluation of a thin film recording head field using the DPC mode of Lorentz electron microscopy[J]. IEEE Transactions on Magnetics, 1995, 31(6): 3373-3375.
[9] SEKI T, IKUHARA Y, SHIBATA N. Toward quantitative electromagnetic field imaging by differential-phase-contrast scanning transmission electron microscopy[J]. Microscopy, 2021, 70(1): 148-160.
[10] MURAKAMI Y O, SEKI T, KINOSHITA A, et al. Magnetic-structure imaging in polycrystalline materials by specimen-tilt series averaged DPC STEM[J]. Microscopy, 2020, 69(5): 312-320.
[11] KOHNO Y, SEKI T, FINDLAY S D, et al. Real-space visualization of intrinsic magnetic fields of an antiferromagnet[J]. Nature, 2022, 602(7896): 234-239.
[12] SCHATTSCHNEIDER P, RUBINO S, HÉBERT C, et al. Detection of magnetic circular dichroism using a transmission electron microscope[J]. Nature, 2006, 441(7092): 486-488.
[13] SONG D, WANG Z, ZHU J. Magnetic measurement by electron magnetic circular dichroism in the transmission electron microscope[J]. Ultramicroscopy, 2019, 201: 1-17.
[14] CHEN Z, TURGUT E, JIANG Y, et al. Lorentz electron ptychography for imaging magnetic textures beyond the diffraction limit[J]. Nature Nanotechnology, 2022, 17(11): 1165-1170.
[15] JEONG J, CAUTAERTS N, DEHM G, et al. Automated crystal orientation mapping by precession electron diffraction-assisted four-dimensional scanning transmission electron microscopy using a scintillator-based CMOS detector[J]. Microscopy and Microanalysis, 2021, 27(5): 1102-1112.
[16] OZDOL V B, GAMMER C, JIN X G, et al. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction[J]. Applied Physics Letters, 2015, 106(25) : 253107.
[17] COOPER D, DENNEULIN T, BERNIER N, et al. Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope[J]. Micron, 2016, 80: 145-165.
[18] HAN Y, NGUYEN K, CAO M, et al. Strain mapping of two-dimensional heterostructures with subpicometer precision[J]. Nano Letters, 2018, 18(6): 3746-3751.
[19] WU L, HAN M G, ZHU Y. Toward accurate measurement of electromagnetic field by retrieving and refining the center position of non-uniform diffraction disks in Lorentz 4D-STEM[J]. Ultramicroscopy, 2023, 250: 113745.
[20] YUEN H K, PRINCEN J, ILLINGWORTH J, et al. Comparative study of Hough transform methods for circle finding[J]. Image and Vision Computing, 1990, 8(1): 71-77.
[21] HASTAWAN A F, SOESANTI I, SETIAWAN N A. Effective method for circle detection based on transformation of chain code direction[C]. AIP Conference Proceedings[J]. AIP Publishing, 2016, 1755(1) : 070004.
[22] LIU Y, DENG H, ZHANG Z, et al. A fast circle detector with efficient arc extraction[J]. Symmetry, 2022, 14(4): 734.
[23] CUEVAS E, SENCIÓN-ECHAURI F, ZALDIVAR D, et al. Multi-circle detection on images using artificial bee colony (ABC) optimization[J]. Soft Computing, 2012, 16: 281-296.
[24] FOURIE J. Robust circle detection using harmony search[J]. Journal of Optimization, 2017, 2017(1): 9710719.
[25] GRIEB T, KRAUSE F F, MÜLLER-CASPARY K, et al. 4D-STEM at interfaces to GaN: Centre-of-mass approach & NBED-disc detection[J]. Ultramicroscopy, 2021, 228: 113321.
[26] MAHR C, MÜLLER-CASPARY K, GRIEB T, et al. Accurate measurement of strain at interfaces in 4D-STEM: A comparison of various methods[J]. Ultramicroscopy, 2021, 221: 113196.
[27] PEKIN T C, GAMMER C, CISTON J, et al. Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping[J]. Ultramicroscopy, 2017, 176: 170-176.
[28] MAHR C, MÜLLER-CASPARY K, GRIEB T, et al. Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction[J]. Ultramicroscopy, 2015, 158: 38-48.
[29] SAVITZKY B H, ZELTMANN S E, HUGHES L A, et al. py4DSTEM: A software package for four-dimensional scanning transmission electron microscopy data analysis[J]. Microscopy and Microanalysis, 2021, 27(4): 712-743.
[30] PIEROBON L, SCHÄUBLIN R E, LÖFFLER J F. Comparison of conventional and Lorentz transmission electron microscopy in magnetic imaging of permanent magnets[J]. Applied Physics Letters, 2021, 119 (2): 022401.
[31] PADGETT E, HOLTZ M E, CUEVA P, et al. The exit-wave power-cepstrum transform for scanning nanobeam electron diffraction: robust strain mapping at subnanometer resolution and subpicometer precision[J]. Ultramicroscopy, 2020, 214: 112994.
[32] MÜLLER K, ROSENAUER A, SCHOWALTER M, et al. Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy[J]. Microscopy and Microanalysis, 2012, 18(5): 995-1009.
[33] YUAN R, ZHANG J, ZUO J M. Lattice strain mapping using circular Hough transform for electron diffraction disk detection[J]. Ultramicroscopy, 2019, 207: 112837.
[34] ZELTMANN S E, MÜLLER A, BUSTILLO K C, et al. Patterned probes for high precision 4D-STEM bragg measurements[J]. Ultramicroscopy, 2020, 209: 112890.
[35] NGUYEN K X, ZHANG X S, TURGUT E, et al. Disentangling magnetic and grain contrast in polycrystalline FeGe thin films using four-dimensional Lorentz scanning transmission electron microscopy[J]. Physical Review Applied, 2022, 17(3): 034066.
[36] WANG B, BAGUÉS N, LIU T, et al. Extracting weak magnetic contrast from complex background contrast in plan-view FeGe thin films[J]. Ultramicroscopy, 2022, 232: 113395.
[37] BOUREAU V, STAŇO M, ROUVIERE J L, et al. High-sensitivity mapping of magnetic induction fields with nanometer-scale resolution: Comparison of off-axis electron holography and pixelated differential phase contrast[J]. Journal of Physics D: Applied Physics, 2020, 54(8): 085001.
[38] NGUYEN K X, HUANG J, KARIGERASI M H, et al. Angstrom-scale imaging of magnetization in antiferromagnetic Fe2As via 4D-STEM[J]. Ultramicroscopy, 2023, 247: 113696.
[39] KRAJNAK M, McGROUTHER D, MANEUSKI D, et al. Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast[J]. Ultramicroscopy, 2016, 165: 42-50.
[40] OPHUS C. Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond[J]. Microscopy and Microanalysis, 2019, 25(3): 563-582.
[41] GOH T Y, BASAH S N, YAZID H, et al. Performance analysis of image thresholding: Otsu technique[J]. Measurement, 2018, 114: 298-307. [42] ZHU C, BYRD R H, LU P, et al. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization[J]. ACM Transactions on Mathematical Software (TOMS), 1997, 23(4): 550-560.
[43] ZHENG F, RYBAKOV F N, BORISOV A B, et al. Experimental observation of chiral magnetic bobbers in B20-type FeGe[J]. Nature Nanotechnology, 2018, 13(6): 451-455.
[44] KOVÁCS A, CARON J, SAVCHENKO A S, et al. Mapping the magnetization fine structure of a lattice of Bloch-type skyrmions in an FeGe thin film[J]. Applied Physics Letters, 2017, 111(19): 192410.