热处理对铸态Mg-xGd-yNd(x+y=6)合金腐蚀行为的影响
秦庆伟#,成思婷#,吕赵鹏,朱子义,刘 振,马鸿斌*,彭 勇*
(1.青海大学 高性能轻金属合金与成形工程研究中心,青海省新型轻合金重点实验室,青海大学盐湖化工大型系列研究设施,青海省盐湖化工材料重点实验室,青海 西宁 810016;2.兰州大学 电镜中心,甘肃 兰州 730000)
摘 要 Mg-Gd系合金作为一种性能优异的轻质镁合金,因其高强度而备受关注。为进一步满足材料轻量化的需求,用轻稀土元素Nd替代Mg-Gd系合金中部分Gd元素是一种有效途径。Nd元素含量的变化以及热处理都对合金的腐蚀行为有着显著的影响。本文详细研究了Nd元素含量变化和热处理对合金微观组织以及腐蚀产物膜的影响。研究结果表明:Nd元素的添加使得合金内部析出相转变为Mg-Gd-Nd化合物,并促进形成了Mg41Nd5相。Nd元素含量变化会导致合金腐蚀产物Mg(OH)2的形貌发生改变。当合金中Nd含量达到4%时,合金表面层片状Mg(OH)2转变为块状Mg(OH)2,腐蚀产物膜的致密性得到进一步提升。在540 ℃热处理条件下,合金内部Mg3(Gd,Nd)相和Mg41Nd5相的分解使得合金的耐腐蚀性能显著提升。
关键词 镁合金;Nd元素;微观组织;腐蚀产物膜;热处理
中图分类号: TG178;TB31;TG115.21+5.3 文献标识码:A Doi:10.3969/j.issn.1000-6281.2025.02.004
Effect of heat treatment on the corrosion behavior of as-cast Mg-xGd-yNd (x+y=6) alloys
QIN Qingwei#,CHENG Siting#,LV Zhaopeng,ZHU Ziyi,LIU Zhen, MA Hongbin*,PENG Yong*
(1. Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming. Salt Lake Chemical Engineering Research Complex, Qinghai University,Key Laboratory of Salt Lake Chemical Material of Qinghai Province, Qinghai University, Xining Qinghai 810016; 2. Electron Microscopy Center, Lanzhou University, Lanzhou Gansu 730000, China)
Abstract Mg-Gd system alloys, known for their excellent properties as lightweight materials, have attracted significant attention due to their high strength. To further meet the demand for lightweight materials, replacing part of the Gd elements with the light rare earth element Nd offers an effective approach. The variation in Nd element content and heat treatment significantly impacts the corrosion behavior of the alloy. This paper provides a detailed study on how changes in Nd content and heat treatment affect the microstructure of the alloy and its corrosion product film. The results indicate that the addition of Nd transforms the internal precipitates into Mg-Gd-Nd compounds and promotes the formation of Mg41Nd5 phase. The variation of Nd content influence the morphology of the corrosion product of Mg(OH)2. When the Nd content reaches 4%, the surface lamellar Mg(OH)2 transforms into tetrahedral Mg(OH)2, and thereby increasing the density of the corrosion product film. Under heat treatment condition at 540 ℃, the decomposition of Mg3(Gd, Nd) phase and Mg41Nd5 phase significantly improves the alloy’s corrosion resistance.
Keywords magnesium alloy; Nd element; microstructure; corrosion product film; heat treatment
[1] BARIL G, GALICIA G, DESLOUIS C, et al. An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions[J]. Journal of The Electrochemical Society, 2007, 154(2): C108.
[2] LV B-J, WANG S, XU T-W, et al. Effects of minor Nd and Er additions on the precipitation evolution and dynamic recrystallization behavior of Mg–6.0Zn–0.5Mn alloy[J]. Journal of Magnesium and Alloys, 2021, 9(3): 840–852.
[3] 龚小康,袁欣,席海辉,等. 时效温度和Ag对Al-Zn-Mg合金力学性能与微观结构的影响[J]. 电子显微学报,2023,42(2):143-152.
[4] LIU P, JIANG H, CAI Z, et al. The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg–Zn alloys[J]. Journal of Magnesium and Alloys, 2016, 4(3): 188–196.
[5] LIU C, CHEN X, HU Y, et al. Microstructure and mechanical properties of gradient ultrafine-grained Mg-Gd-Zr alloy[J]. Journal of Materials Research and Technology, 2022, 21: 3896–3908.
[6] DAI J W, DONG Q S, NIE Y J, et al. Insight into the role of Y addition in the microstructures, mechanical and corrosion properties of as-cast Mg-Gd-Y-Zn-Ca-Zr alloys[J]. Materials & Design, 2022, 221: 110980.
[7] HU W, HUANG W, SUN Y, et al. Influence of load frequency and corrosive environments on fatigue behavior of as-extruded Mg–Zn–Zr–Nd alloy[J]. Journal of Materials Research and Technology, 2023, 22: 2627–2640.
[8] 曹志坚,刘林林,孙鹏阳,等. AZ91镁合金中变形孪晶与析出相交互作用结构的电子显微学研究[J]. 电子显微学报,2024,43(1):38-43.
[9] 毕建军,刘翠秀,李万鹏,等. Mg-Y合金中共轴{112 ̅1}孪晶交互的电子显微研究[J]. 电子显微学报,2019,38(5):496-501.
[10] XIE J S, ZHANG J H, ZHANG Z, et al. Corrosion behavior and mechanism of Mg–Er–Zn–Zr alloys in different states[J]. Journal of Materials Research and Technology, 2022, 19: 30–45.
[11] YIN S, DUAN W, LIU W, et al. Improving the corrosion resistance of MgZn1.2Gd Zr0.18 (x = 0, 0.8, 1.4, 2.0) alloys via Gd additions[J]. Corrosion Science, 2020, 177: 108962.
[12] ABDELGAWAD M, USMAN C A, SHUNMUGASAMY VC, et al. Corrosion behavior of Mg-Zn-Zr-RE alloys under physiological environment – Impact on mechanical integrity and biocompatibility[J]. Journal of Magnesium and Alloys, 2022, 10(6): 1542–1572.
[13] MEI W, PANG H, LI Q, et al. Effect of Sm on twinning behavior of Mg-Gd-Y-Zr alloy at room temperature compression[J]. Journal of Materials Research and Technology, 2023, 25: 2545–2555.
[14] ZHANG Q, CHEN Z, LI Q, et al. Deformation behavior characterized by reticular shear bands and long chain twins in Mg-Gd-Nd(-Zn)-Zr alloys[J]. Journal of Materials Research and Technology, 2021, 15: 5326–5342.
[15] Wei X, Jin L, Wang F, et al. Effect of Zn/(Gd+Y) ratio on the microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy [J]. Materials Characterization, 2020,169:110670.
[16] N. Bayat-Tork, R. Mahmudi, et al. Hot deformation constitutive analysis and processing maps of extruded Mg–Gd binary alloys [J]. Journal of Materials Research and Technology, 2020,9: 15346–15359.
[17] XU Y. Mechanical behaviors of extruded Mg alloys with high Gd and Nd content[J]. Progress in Natural Science, 2021, 31: 591–598.
[18] SUN M, WU G H, WANG W, et al. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy[J]. Materials Science and Engineering: A, 2009, 523(1/2): 145–151.
[19] ZHENG L, ZHUANG Y, LI J, et al. Mechanical properties of Mg-Gd-Zr alloy by Nd addition combined with hot extrusion[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(6): 1866–1880.
[20] ZHANG M, WANG Z, ZHANG Z, et al. Effect of temperature on the microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloy during the large height-to-diameter ratio upsetting and extrusion[J]. Journal of Materials Research and Technology, 2023, 26: 8036–8047.
[21] QIN H, YANG G Y, KAN Z Y, et al. Effect of substituting Gd with 3 wt% Nd on high temperature creep behaviors of peak-aged Mg-10Gd-0.4Zr casting Mg alloy[J]. Journal of Materials Research and Technology, 2023, 25: 5781–5794. [22] ZEMKOVÁ M, MINÁRIK P, DITTRICH J, et al. Individual effect of Y and Nd on the microstructure formation of Mg-Y-Nd alloys processed by severe plastic deformation and their effect on the subsequent mechanical and corrosion properties[J]. Journal of Magnesium and Alloys, 2023, 11(2): 509–521.
[23] LEI B, JIANG B, YANG H B, et al. Effect of Nd addition on the microstructure and mechanical properties of extruded Mg-Gd-Zr alloy[J]. Materials Science and Engineering: A, 2021, 816: 141320.
[24] RAN C H, DING M, LI X F, et al. Compressive and creep behavior of Mg-Gd-Y-Zn-Mn-Nd alloy with different orientations[J]. Journal of Materials Research and Technology, 2024, 29: 1756–1766.
[25] SUN L X. Roles of the heat treatment on the Mg-Nd phases and corrosion mechanisms of Mg-4Nd alloy under sulfuric acid type acid rain[J]. Corrosion Science, 2022, 208: 110610.
[26] SRINIVASAN A, BLAWERT C, HUANG Y, et al. Corrosion behavior of Mg–Gd–Zn based alloys in aqueous NaCl solution[J]. Journal of Magnesium and Alloys, 2014, 2(3): 245–256.
[27] YIN S Q, DUAN W C, LIU W H, et al. Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys[J]. Corrosion Science, 2020, 166: 108419.