预变形对Al-4.0Cu-0.9Li-0.2Mg合金微观结构和力学性能的影响
魏少青,李石勇 *,伍翠兰,陈江华*
(1. 海南大学精密仪器高等研究中心,海洋材料表征技术创新研究院,皮米电镜中心,海南 海口570228;2. 海南大学海南省皮米电子显微学重点实验室,海南 海口 570228;3. 湖南大学材料科学与工程学院高分辨电镜中心,湖南 长沙 410082)
摘 要 通过显微硬度测试、拉伸力学性能测试、透射电子显微镜观察等手段,研究了预变形工艺对时效Al-4.0Cu-0.9Li-0.2Mg (wt.%)合金微观结构和力学性能的影响。结果表明,时效前引入预变形的T8工艺能显著加快合金的时效响应速率并提高合金的峰值时效强度,但合金的延伸率却明显降低。未变形合金在160 ℃下峰值时效时主要析出相为δ'/θ'/δ'共生相和T1相,引入预变形的合金中主要析出相均为T1相,而δ'/θ'/δ'共生相的析出则明显受到抑制,并且随着变形量的增加,合金中δ'/θ'/δ'共生相的数量也越来越少,而T1相也逐渐变得更加细小。T8工艺促进了形变强化和析出强化,使得合金强度提高,但预变形的引入使得合金在后续变形过程中更容易产生位错塞积,因此合金塑性明显下降。引入变形后合金中存在着大量的位错,给T1相的形核析出提供了大量的异质形核点,又由于合金中的溶质原子数量有限,因此δ'/θ'/δ'共生相的析出受到抑制。
关键词 Al-Cu-Li-Mg合金;形变时效;微观结构;力学性能;透射电子显微镜
中图分类号: TG146.2+1;TG115.21+5.3;TG113 文献标识码:A Doi:10.3969/j.issn.1000-6281.2025.02.003
Effects of pre-deformation on the microstructure and mechanical properties of Al-4.0Cu-0.9Li-0.2Mg alloy
WEI Shaoqing,LI Shiyong*,WU Cuilan,CHEN Jianghua*
(1. Pico Electron Microscopy Center, Innovation Institute for Ocean Materials Characterization, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou Hainan 570228; 2. Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou Hainan 570228; 3. Center for High Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha Hunan 410082,China)
Abstract The effect of the pre-deformation process on the microstructure and mechanical properties of the Al-4.0Cu-0.9Li-0.2Mg (wt. %) alloy was studied using microhardness testing, tensile mechanical property testing, and transmission electron microscope. The results indicate that the T8 process, which involves pre-deformation followed by artificial aging at 160 ℃, significantly accelerates the alloy’s aging response and increases its peak strength. However, this process also leads to a significant reduction in elongation. During peak aging at 160 ℃, the main precipitates in the undeformed alloy are δ'/θ'/δ' composite precipitates and T1 precipitates. In contrast, the T8-treated alloy also predominatly features T1 precipitates, with the precipitation ofδ'/θ'/δ' composite precipitates being significantly suppressed. Furthermore, as the deformation increases, the number of δ'/θ'/δ' composite precipitatesdecreases, while the T1 precipitates becomes gradually finer. The introduction of pre-deformation enhances both deformation strengthening and subsequent precipitation strengthening, leading to an improvement in the alloy’s strength. However, pre-deformation also promotes dislocation pile-up during subsequent deformation, significantly reducing the alloy’s plasticity. The pre-deformd alloy contains a high density of dislocations, which serve as heterogeneous nucleation sites for T1 precipitates. Due to the limited availablity of solute atoms, the preferential formation of T1 precipitates inhibites the precipitation of δ'/θ'/δ' composite precipitates.
Keywords Al-Cu-Li-Mg alloys; pre-deformation and aging; microstructure; mechanical properties; transmission electron microscopy
[1] HAJJIOUI E A, BOUCHAÂLA K, FAQIR M, et al. A review of manufacturing processes, mechanical properties and precipitations for aluminum lithium alloys used in aeronautic applications [J]. Heliyon, 2023, 9(3): e12565.
[2] DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys [J]. Materials and Design, 2014, 56: 862-871.
[3] RIOJA R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications [J]. Materials Science and Engineering A, 1998, 257: 100-107.
[4] STARKE E A, STALEY J T. Application of modern aluminum alloys to aircraft [J]. Progress in Aerospace Sciences, 1996, 32(2): 131-172.
[5] XUE C, ZHANG Y, WANG S, et al. Achieving highest Young's modulus in Al-Li by tracing the size and bonding evolution of Li-rich precipitates [J]. Journal of Materials Science & Technology, 2023, 145: 125-135.
[6] ABD EL-ATY A, XU Y, GUO X Z, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review [J]. Journal of Advanced Research, 2018, 10: 49-67.
[7] RIOJA R J, LIU J. The evolution of Al-Li base products for aerospace and space applications [J]. Metallurgical and Materials Transactions A, 2012, 43: 3325-3337.
[8] 李劲风,宁红,刘丹阳,等. Al-Cu-Li 系铝锂合金的合金化与微合金化 [J]. 中国有色金属学报, 2021, 31(2): 258-279.
[9] LI S Y, DUAN S Y, MING W Q, et al. Genetic structural phase evolution from Li-containing S-like phase precipitates towards S-phase in AlCuLiMg alloys [J]. Acta Materialia, 2022, 233: 117997.
[10] GUINEL M J, BRODUSCH N, SHA G, et al. Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys [J]. Journal of microscopy, 2014, 255(3): 128-137.
[11] DESCHAMPS A, GARCIA M, CHEVY J, et al. Influence of Mg and Li content on the microstructure evolution of Al-Cu-Li alloys during long-term ageing [J]. Acta Materialia, 2017, 122: 32-46.
[12] 王硕,张弛,王俊升. 铝锂合金纳米析出相结构与性能综述 [J]. 航空制造技术, 2021, 64(9): 68-76.
[13] LI S Y, SHEN R H, HE Y T, et al. Quantitative electron tomography for accurate measurement of precipitates microstructure parameters in Al-Cu-Li alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35: 1882-1894.
[14] DECREUS B, DESCHAMPS A, DE GEUSER F, et al. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-X alloys [J]. Acta Materialia, 2013, 61: 2207-2218.
[15] GAO Z, LIU J Z, CHEN J H, et al. Formation mechanism of precipitate T1 in AlCuLi alloys [J]. Journal of Alloys and Compounds, 2015, 624: 22-26.
[16] KIM K, ZHOU B C, WOLVERTON C. First-principles study of crystal structure and stability of T1 precipitates in Al-Li-Cu alloys [J]. Acta Materialia, 2018, 145: 337-346.
[17] 高珍,陈江华,刘吉梓,等. Al-Cu-Li合金中T1相的演变规律研究 [J]. 电子显微学报, 2012, 31(4): 308-314.
[18] WANG S, YANG X H, WANG J S, et al. Identifying the crystal structure of T1 precipitates in Al-Li-Cu alloys by ab initio calculations and HAADF-STEM imaging [J]. Journal of Materials Science & Technology, 2023, 133: 41-57.
[19] DUAN S Y, WU C L, GAO Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Materialia, 2017, 129: 352-360.
[20] 段石云. 合金元素锂对Al-Cu-Mg合金时效析出行为的影响 [D]. 长沙:湖南大学, 2017.
[21] WANG S B, CHEN J H, YIN M J, et al. Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AlCuMg alloys [J]. Acta Materialia, 2012, 60: 6573-6580.
[22] LIU Z R, CHEN J H, WANG S B, et al. The structure and the properties of S-phase in AlCuMg alloys [J]. Acta Materialia, 2011, 59: 7396-7405.
[23] DUAN S Y, LE Z, CHEN Z K, et al. Li-atoms-induced structure changes of Guinier-Preston-Bagaryatsky zones in AlCuLiMg alloys [J]. Materials Characterization, 2016, 121: 207-212.
[24] 黄磊萍,杨修波,陈江华,等. 不同热处理工艺对Al-3.8Zn-1.6Mg铝合金微结构与腐蚀行为作用的探讨 [J]. 电子显微学报, 2017, 36(3): 222-228.
[25] LI S Y, WANG Q, CHEN J H, et al. The effect of thermo-mechanical treatment on the formation of T1 phase and δ'/θ'/δ' composite precipitate in an Al-Cu-Li-Mg alloy [J]. Materials Characterization, 2021, 176: 111123.
[26] 饶栋,陈江华,杨修波,等. 三级时效7N01铝合金微观结构与力学性能关系的研究 [J]. 电子显微学报, 2016, 35(5): 379-385.
[27] 许军军,袁欣,明文全,等. Al-Zn-Mg-Cu-Li合金均匀化与固溶热处理工艺优化 [J]. 电子显微学报, 2023, 42(5): 588-595.
[28] 龚小康,袁欣,席海辉,等. 时效温度和Ag对Al-Zn-Mg合金力学性能与微观结构的影响 [J]. 电子显微学报, 2023, 42(2): 143-152.
[29] 范唯,向雪梅,雷潘敏,等. Mg/Si比对Al-Mg-Si-Zn合金自然时效效应的影响 [J]. 电子显微学报, 2023, 42(6): 731-739.
[30] GONG X P, LUO S F, LI S Y, et al. Dislocation-induced precipitation and its strengthening of Al-Cu-Li-Mg alloys with high Mg [J]. Acta Metallurgica Sinica (English Letters), 2021, 34: 597-605. [31] GUO G Y, LI Y, LI H R, et al. Quantitative effects of pre-deformation prior to non-isothermal aging on the mechanical properties-microstructure relationships in an Al-3.51Cu-1.01Li alloy [J]. Materials & Design, 2022, 223: 111137.
[32] 邹富强,李石勇,伍翠兰,等. 形变时效对Al-2.4 Cu-0.9 Li-0.7 Mg合金的显微组织和力学性能的影响 [J]. 电子显微学报, 2019, 38(6): 623-631.
[33] LÜ P, WANG R, PENG C, et al. Precipitation and mechanical properties for rapidly solidified Al-Cu-Li alloy: Effect of pre-rolling [J]. Journal of Alloys and Compounds, 2022, 929: 167369.
[34] YE F, YU Y, ZHANG B, et al. Influence of pre-stretching at ambient and cryogenic temperatures on dislocation configuration, precipitation behaviour, and mechanical properties of 2195 Al-Cu-Li alloy [J]. Journal of Materials Research and Technology, 2023, 22: 2983-2995.
[35] 李石勇. AlCuLi合金精细显微结构的电镜表征研究 [D]. 长沙:湖南大学, 2022.
[36] KUMAR K S, BROWN S A, PICKENS J R. Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy [J]. Scripta Metallurgica et Materialia, 1990, 24(7): 1245-1250. [37] GABLE B M, ZHU A W, CSONTOS A A, et al. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy [J]. Journal of Light Metals, 2001, 1: 1-14.
[38] 李耀,徐国富,乔海光,等. 预变形量对2050Al-Li合金显微组织和力学性能的影响(英文) [J]. Transactions of Nonferrous Metals Society of China, 2024, 34: 1774-1788.
[39] ZHU X, YANG X, HUANG W, et al. Influence of pre-stretching on the tensile strength, fatigue properties and the in-plane anisotropy in Al-Cu-Li alloy AA2099 [J]. Journal of Materials Science & Technology, 2023, 145: 249-259.