应力作用下单晶钛酸钡亚微米柱相、畴演变的原位电子显微镜研究

任义丰,庞振涛,王志超,周雪松,许 航,毛亚川,陈 茂,邓 昱*

应力作用下单晶钛酸钡亚微米柱相、畴演变的原位电子显微镜研究

任义丰,庞振涛,王志超,周雪松,许 航,毛亚川,陈 茂,邓 昱*

(1. 南京大学物理学院,江苏 南京 210023; 2. 南京大学现代工程与应用科学学院, 江苏 南京 210093; 3. 南京大学固体微结构物理国家重点实验室,江苏 南京 210093)

摘 要 在应力场作用下,铁电材料中铁电/铁弹性畴的演化是一个重要而复杂的过程,这一过程涉及到跨尺度层次结构的相互作用。为了解关键的局部微观结构演变,本文利用原位透射电镜(TEM)直接观察了应力诱导钛酸钡(BaTiO3)亚微米柱的层次结构演变。结果表明,相、畴演化对加载方式(加载/卸载速率、应力维持时间和应力大小)较为敏感。在室温下,通过慢循环压缩(加载高达0.5GPa,应变速率为10-4/s,循环100次)可以引入由四方相到四方-正交相边界的应变驱动相变。基于此,本文提出了一种机械方法,在BaTiO3中获得稳定良好的高密度多畴多相共存结构,具有潜在的应用前景。

关键词 钛酸钡铁电材料;相畴结构;应力场;原位电子显微学

中图分类号:TB383;TG115. 5;TG115.21+5.3;O76 文献标识码:A A Doi:10.3969/j.issn.1000-6281.2025.02.002

 

In-situ electron microscopy studies on phase and domain evolution of BaTiO3 sub-micrometer pillar under stress

REN Yifeng, PANG Zhentao, WANG Zhichao, ZHOU Xuesong, XU Hang, MAO Yachuan, CHEN Mao, DENG Yu*

(1. School of Physics, Nanjing University, Nanjing Jiangsu 210093;2. Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing Jiangsu 210023;3. Solid State Microstructure National Key Lab and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing Jiangsu 210093)

Abstract The evolution of ferroelectric/ferroelastic domains in ferroelectric materials under stress is a significant and complex process. This process involves the interaction of hierarchical domain structures across multiple scales. In this study, we employed in-situ transmission electron microscopy (TEM) to directly observe the stress-induced hierarchical domain evolution in BaTiO3 sub-micrometer pillars. The results indicate that domain evolution is sensitive to loading conditions, including loading/unloading speed, stress maintenance duration, and stress amplitude. We observed a strain-driven phase transition from the tetragonal phase to the tetragonal-orthorhombic phase boundary, which can be induced by slow cycling compressions (up to 0.5 GPa, strain rate of 10−4/s, 100 cycles) at room temperature. Based on these findings, we developed a mechanical method to achieve well-stabilized, high-density, multiple-phase-coexisting structures in BaTiO3 for potential applications.

Keywords BaTiO3 ferroelectric material; phase and domain structures; stress field; in-situ transmission electron microscope