应力作用下单晶钛酸钡亚微米柱相、畴演变的原位电子显微镜研究
任义丰,庞振涛,王志超,周雪松,许 航,毛亚川,陈 茂,邓 昱*
(1. 南京大学物理学院,江苏 南京 210023; 2. 南京大学现代工程与应用科学学院, 江苏 南京 210093; 3. 南京大学固体微结构物理国家重点实验室,江苏 南京 210093)
摘 要 在应力场作用下,铁电材料中铁电/铁弹性畴的演化是一个重要而复杂的过程,这一过程涉及到跨尺度层次结构的相互作用。为了解关键的局部微观结构演变,本文利用原位透射电镜(TEM)直接观察了应力诱导钛酸钡(BaTiO3)亚微米柱的层次结构演变。结果表明,相、畴演化对加载方式(加载/卸载速率、应力维持时间和应力大小)较为敏感。在室温下,通过慢循环压缩(加载高达0.5GPa,应变速率为10-4/s,循环100次)可以引入由四方相到四方-正交相边界的应变驱动相变。基于此,本文提出了一种机械方法,在BaTiO3中获得稳定良好的高密度多畴多相共存结构,具有潜在的应用前景。
关键词 钛酸钡铁电材料;相畴结构;应力场;原位电子显微学
中图分类号:TB383;TG115. 5;TG115.21+5.3;O76 文献标识码:A A Doi:10.3969/j.issn.1000-6281.2025.02.002
In-situ electron microscopy studies on phase and domain evolution of BaTiO3 sub-micrometer pillar under stress
REN Yifeng, PANG Zhentao, WANG Zhichao, ZHOU Xuesong, XU Hang, MAO Yachuan, CHEN Mao, DENG Yu*
(1. School of Physics, Nanjing University, Nanjing Jiangsu 210093;2. Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing Jiangsu 210023;3. Solid State Microstructure National Key Lab and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing Jiangsu 210093)
Abstract The evolution of ferroelectric/ferroelastic domains in ferroelectric materials under stress is a significant and complex process. This process involves the interaction of hierarchical domain structures across multiple scales. In this study, we employed in-situ transmission electron microscopy (TEM) to directly observe the stress-induced hierarchical domain evolution in BaTiO3 sub-micrometer pillars. The results indicate that domain evolution is sensitive to loading conditions, including loading/unloading speed, stress maintenance duration, and stress amplitude. We observed a strain-driven phase transition from the tetragonal phase to the tetragonal-orthorhombic phase boundary, which can be induced by slow cycling compressions (up to 0.5 GPa, strain rate of 10−4/s, 100 cycles) at room temperature. Based on these findings, we developed a mechanical method to achieve well-stabilized, high-density, multiple-phase-coexisting structures in BaTiO3 for potential applications.
Keywords BaTiO3 ferroelectric material; phase and domain structures; stress field; in-situ transmission electron microscope
[1] ZECHES R, ROSSELL M, ZHANG J, et al. A strain-driven morphotropic phase boundary in BiFeO3[J]. Science, 2009, 326: 977-980.
[2] SUN E, CAO W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications[J]. Progress in Materials Science, 2014, 65: 124-210.
[3] WANG B, LI F, CHEN L, Inverse domain-size dependence of piezoelectricity in ferroelectric crystals[J]. Advanced Materials, 2021, 33: 2105071.
[4] AN Z, YOKOTA H, KURIHARA K, et al. Tuning of polar domain boundaries in nonpolar perovskite[J]. Advanced Materials, 2023, 35: 2207665. [5] GUENNOU M, BOUVIER P, CHEN G, et al. Multiple high-pressure phase transitions in BiFeO3[J]. Physical Review B, 2011, 84(17): 174107.
[6] DONG G, LI S, YAO M, et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation[J]. Science, 2019, 366, 475-479.
[7] DAI L, ZHAO J, LI J, et al. Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge[J]. Nature Communications, 2022, 13: 2990.
[8] CHANG L, NAGARAJAN V, SCOTT J, et al. Self-similar nested flux closure structures in a tetragonal ferroelectric[J]. Nano Letter, 2013, 13(6): 2553-2557.
[9] IVRY Y, CHU D, DURKAN C. Bundles of polytwins as meta-elastic domains in the thin polycrystalline simple multi-ferroic system PZT[J]. Nanotechnology, 2010, 21(6): 065702.
[10] ROYTBURD A, ALPAY S, BENDERSKY L, et al. Three-domain architecture of stressfree epitaxial ferroelectric films[J]. Journal of Applied Physics, 2001, 89(1): 553-556.
[11] REN X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching[J]. Nature Materials, 2004, 3(2): 91-94.
[12] LEE W, SALJE E. Chemical turnstile[J]. Applied Physics Letters, 2005, 87(14): 143110.
[13] ZHU X, ZHU J, ZHOU S, et al. Saed and TEM investigations of domain structure in bismuth-and zinc-modified Pb(M1/3Nb2/3)O3-PbTiO3-PbZrO3 ceramics at morphotropic phase boundary[J]. Ferroelectrics, 1998, 215: 265-276.
[14] JIA C, URBAN K. Atomic-resolution measurement of oxygen concentration in oxide materials[J]. Science, 2004, 303(5666): 2001-2004.
[15] SAMARA G. Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3[J]. Physical Review, 1966, 151(2): 378-386.
[16] GU Y, XUE F, LEI S, et al. Monoclinic phases arising across thermal interferroelectric phase transitions[J]. Physical Review B, 2014, 90(2): 024104. [17] KONG L, LIU G, YANG W, et al. An insight into the origin of low-symmetry bridging phase and enhanced functionality in systems containing competing phases[J]. Applied Physics Letters, 2015, 107: 042901.