石墨烯载网在冷冻电镜样品制备中的应用研究
宋佶岭,张晨辉,付韵桥,王宏伟*,刘 楠*
(1.清华大学 生命科学学院,北京生物结构前沿中心教育部蛋白质科学重点实验室,北京 100084;2.香港大学 生物科学学院,香港 999077;3. 北京石墨烯研究院有限公司,北京 100095)
摘 要 在冷冻电镜结构解析过程中,样品制备是关键限速步骤之一,经常受到气液界面等问题困扰。石墨烯支撑膜能够富集生物样品颗粒、降低电子束照射导致的样品漂移和充电效应,并且具有较低的背景噪音,已经被应用于冷冻样品的制备,缓解气液界面等问题造成的影响,提高样品制备成功率。为了更广泛地将石墨烯载网用以冷冻电镜样品制备,本文介绍了石墨烯载网的表征办法和对比了不同亲水化处理条件对石墨烯支撑膜产生的影响,着重针对使用石墨烯载网制备冷冻样品时出现的一些异常冰层现象进行了研究分析,并讨论了冷冻样品制备过程中溶液的扩散过程。该研究加深了对石墨烯表面液体分布和扩散过程的理解,为优化使用石墨烯载网用以冷冻电镜样品制备提供了基础。
关键词 冷冻电镜;样品制备;石墨烯;生物大分子
中图分类号:Q617;Q336 文献标识码:BDoi:10.3969/j.issn.1000-6281.2025.01.012
The application of graphene grids in Cryo-EM sample preparation
SONG Jiling1, ZHANG Chenhui2, FU Yunqiao3, WANG Hongwei1*, LIU Nan2*
(1. MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084;2. School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China;3. Beijing Graphene Institute Co., Ltd., Beijing 100095, China)
Abstract In the process of Cryo-electron microscopy (Cryo-EM) structural analysis of biological macromolecules, sample preparation is one of the key rate-limiting steps, often hindered by the air-water interface issue. Graphene offers advantages such as particle enrichment, reduction of beam-induced motion and charging effects, and minimal background noise. Consequently, graphene grids have been utilized in Cryo-EM to improve sample preparation success rates and address challenges like preferred orientation and structural damage caused by the air-water interface. To further expand the applications of graphene grids in Cryo-EM sample preparation, this study characterizes and optimizes usage conditions for graphene grids. We further investigated and analyzed anomalous ice layer phenomena encountered when utilizing graphene grids for Cryo-sample preparation, as well as examining the diffusion process of solutions during sample preparation. This research contributes to a deeper understanding of the utilization of graphene grids in Cryo-EM sample preparation.
Keywords Cryo-EM;sample preparation;graphene;macromolecule
[1] CHENG Y. Single-particle Cryo-EM at crystallographic resolution [J]. Cell, 2015, 161(3): 450-457.
[2] 温瑷嘉, 冯钰. 冷冻电镜在原核转录调控机制研究中的应用 [J]. 电子显微学报, 2023, 42(4): 481-492.
[3] 朱东杰, 章新政. 冷冻电镜解析病毒颗粒中的蛋白质结构 [J]. 电子显微学报, 2023, 42(1): 94-103.
[4] YOU X, ZHANG X, CHENG J, et al. In situ structure of the red algal phycobilisome–PSII–PSI–LHC megacomplex [J]. Nature, 2023, 616(7955): 199-206.
[5] ZHENG L, LIU N, GAO X, et al. Uniform thin ice on ultraflat graphene for high-resolution Cryo-EM [J]. Nature Methods, 2023, 20(1): 123-130.
[6] FAN X, WANG J, ZHANG X, et al. Single particle Cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution [J]. Nature Communications, 2019, 10(1): 2386.
[7] 池希敏, 李晓荣, 黄邦栋, 等. 人源硫酸盐转运蛋白DTDST的结构生物学研究 [J]. 电子显微学报, 2023, 42(1): 21-29.
[8] 秦逸澄, 刘蕴辉, 沈庆涛. 冷冻电镜研究野生型DegP降解底物的构象变化 [J]. 电子显微学报, 2023, 42(1): 30-38.
[9] GLAESER R M. Proteins, interfaces, and Cryo-EM grids [J]. Current Opinion in Colloid & Interface Science, 2018, 34(1-8)
[10] GLAESER R M. How good can single-particle Cryo-EM become? What remains before it approaches its physical limits? [J]. Annual Review of Biophysics, 2019, 48: 45-61.
[11] GLAESER R M. Preparing better samples for Cryo–electron microscopy: Biochemical challenges do not end with isolation and purification [J]. Annual Review of Biochemistry, 2021, 90: 451-474.
[12] ARMSTRONG M, HAN B-G, GOMEZ S, et al. Microscale fluid behavior during Cryo-EM sample blotting [J]. Biophysical Journal, 2020, 118(3): 708-719.
[13] LIU N, WANG H-W. Better Cryo-EM specimen preparation: How to deal with the air–water interface? [J]. Journal of Molecular Biology, 2023, 435(9): 167926.
[14] HAN B-G, AVILA-SAKAR A, REMIS J, et al. Challenges in making ideal Cryo-EM samples [J]. Current Opinion in Structural Biology, 2023, 81: 102646.
[15] FAN H, WANG B, ZHANG Y, et al. A Cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI [J]. Nature Communications, 2021, 12(1): 7257.
[16] HAN B-G, WATSON Z, KANG H, et al. Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules [J]. Journal of Structural Biology, 2016, 195(2): 238-244.
[17] CHEN J, NOBLE A J, KANG J Y, et al. Eliminating effects of particle adsorption to the air/water interface in single-particle Cryo-electron microscopy: Bacterial RNA polymerase and CHAPSO [J]. Journal of Structural Biology: X, 2019, 1: 100005.
[18] LI B, ZHU D, SHI H, et al. Effect of charge on protein preferred orientation at the air–water interface in Cryo-electron microscopy [J]. Journal of Structural Biology, 2021, 213(4): 107783.
[19] RUSSO C J, PASSMORE L A. Controlling protein adsorption on graphene for Cryo-EM using low-energy hydrogen plasmas [J]. Nature Methods, 2014, 11(6): 649-652.
[20] PALOVCAK E, WANG F, ZHENG S Q, et al. A simple and robust procedure for preparing graphene-oxide Cryo-EM grids [J]. Journal of Structural Biology, 2018, 204(1): 80-84.
[21] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388.
[22] GEIM A K. Graphene: Status and prospects [J]. Science, 2009, 324(5934): 1530-1534.
[23] LIU N, WANG H-W. Graphene in Cryo-EM specimen optimization [J]. Current Opinion in Structural Biology, 2024, 86: 102823.
[24] DENG B, XIN Z, XUE R, et al. Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays [J]. Science Bulletin, 2019, 64(10): 659-668.
[25] ZHENG L, LIU N, LIU Y, et al. Atomically thin bilayer janus membranes for Cryo-electron microscopy [J]. ACS Nano, 2021, 15(10): 16562-16571.
[26] ZHANG J, LIN L, SUN L, et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells [J]. Advanced Materials, 2017, 29(26): 1700639.
[27] HAN Y, FAN X, WANG H, et al. High-yield monolayer graphene grids for near-atomic resolution Cryo-electron microscopy [J]. Proceedings of the National Academy of Sciences, 2020, 117(2): 1009-1014.
[28] PATEL A, TOSO D, LITVAK A, et al. Efficient graphene oxide coating improves Cryo-EM sample preparation and data collection from tilted grids [J]. bioRxiv 2021.03.08.434344.
[29] LIU N, ZHENG L, XU J, et al. Reduced graphene oxide membrane as supporting film for high-resolution Cryo-EM [J]. Biophysics Reports, 2021, 7(3): 227-238.
[30] NAYDENOVA K, PEET M J, RUSSO C J. Multifunctional graphene supports for electron Cryomicroscopy [J]. Proceedings of the National Academy of Sciences, 2019, 116(24): 11718-11724.
[31] LU Y, LIU N, LIU Y, et al. Functionalized graphene grids with various charges for single-particle Cryo-EM [J]. Nature Communications, 2022, 13(1): 6718.
[32] CHENG H, ZHENG L, LIU N, et al. Dual-affinity graphene sheets for high-resolution Cryo-electron microscopy [J]. Journal of the American Chemical Society, 2023, 145(14): 8073-8081.
[33] LIU N, ZHANG J, CHEN Y, et al. Bioactive functionalized monolayer graphene for high-resolution Cryo-electron microscopy [J]. Journal of the American Chemical Society, 2019, 141(9): 4016-4025.
[34] ZHAO Q, HONG X, WANG Y, et al. An immobilized antibody-based affinity grid strategy for on-grid purification of target proteins enables high-resolution Cryo-EM [J]. Communications Biology, 2024, 7(1): 715.
[35] ZHANG J, JIA K, HUANG Y, et al. Hydrophilic, clean graphene for cell culture and Cryo-EM imaging [J]. Nano Letters, 2021, 21(22): 9587-9593.
[36] MASTRONARDE D N. Automated electron microscope tomography using robust prediction of specimen movements [J]. Journal of Structural Biology, 2005, 152(1): 36-51.
[37] ZHENG S Q, PALOVCAK E, ARMACHE J-P, et al. MotionCor2: Anisotropic correction of beam-induced motion for improved Cryo-electron microscopy [J]. Nature Methods, 2017, 14(4): 331-332.
[38] KREMER J R, MASTRONARDE D N, MCINTOSH J R. Computer visualization of three-dimensional image data using IMOD [J]. Journal of Structural Biology, 1996, 116(1): 71-76.
[39] LEVITZ T S, WECKENER M, FONG I, et al. Approaches to using the chameleon: Robust, automated, fast-plunge Cryo-EM specimen preparation [J]. Frontiers in Molecular Biosciences, 2022, 9: 1-10.
[40] PANTELIC R S, MEYER J C, KAISER U, et al. Graphene oxide: A substrate for optimizing preparations of frozen-hydrated samples [J]. Journal of Structural Biology, 2010, 170(1): 152-156.
[41] SUK J W, PINER R D, AN J, et al. Mechanical properties of monolayer graphene oxide [J]. ACS Nano, 2010, 4(11): 6557-6564.
[42] WRIGHT E R, IANCU C V, TIVOL W F, et al. Observations on the behavior of vitreous ice at ∼82 and∼12K [J]. Journal of Structural Biology, 2006, 153(3): 241-252.
[43] LEE D, LEE H, LEE J, et al. Copper oxide spike grids for enhanced solution transfer in cryogenic electron microscopy [J]. Molecules and Cells, 2023, 46(9): 538-544.