人源谷氨酸转运蛋白EAAT2的结构研究
夏凌云#,张媛媛#,施 仪#,黄 晶*,周 强*
(1.西湖大学未来产业中心,生命科学学院,浙江省结构生物学重点实验室,浙江 杭州 310024;2. 西湖实验室(生命科学和生物医学浙江省实验室),浙江 杭州 310024;3. 浙江西湖高等研究院,生物学研究所,浙江 杭州 310024)
摘 要 谷氨酸是脊椎动物神经系统中的主要兴奋性神经递质,它启动快速信号传递并涉及学习、记忆和突触可塑性。信号传递的最后一步也是至关重要的一步,是从突触间隙迅速清除释放的谷氨酸,以防止神经元的兴奋毒性,这主要是由兴奋性氨基酸转运体2(EAAT2)完成的。这里描述了人类EAAT2向内开口的结构,包括具有开放HP2门的无配体构象,抑制剂阻断的开放构象以及激活剂结合的闭合构象。这些结构显示EAAT2向胞内转运神经递质后,抑制剂WAY-213613通过竞争底物结合位点,将其阻断在向内开口且HP2环开放的构象,抑制其反向转运过程。而激活剂GT949或许能加速这一过程。这些结构信息提供了配体位置和EAAT2活性调节机制的分子细节。总之,这些结构数据为研究EAAT结构-功能关系和设计新型治疗调节剂奠定了基础。
关键词 谷氨酸转运蛋白;SLC1A2;神经退行性疾病;冷冻电镜结构
中图分类号:Q518.2;R589.3 ;R596 文献标识码:ADoi:10.3969/j.issn.1000-6281.2025.01.009
Structural study of human glutamate transporter EAAT2
XIA Lingyun#,ZHANG Yuanyuan#,SHI Yi#,HUANG Jing*,ZHOU Qiang*
(1. Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou Zhejiang 310024;2. Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou Zhejiang 310024;3. Institute of Biology, Westlake Institute for Advanced Study, Hangzhou Zhejiang 310024, China)
Abstract Glutamate is the primary excitatory neurotransmitter in the vertebrate nervous system, initiating rapid signal transmission and playing key roles in learning, memory, and synaptic plasticity. The final, crucial step in signal transmission is the rapid clearance of released glutamate from the synaptic cleft to prevent excitotoxicity, a task predominantly carried out by the excitatory amino acid transporter 2 (EAAT2). Here, we present the inward-facing structures of human EAAT2, including the ligand-free conformation with an open HP2 gate, an inhibitor-bound open conformation, and an activator-bound closed conformation. These structures demonstrate that, following the intracellular transport of neurotransmitters, the inhibitor WAY-213613 competitively binds to the substrate binding site, locking EAAT2 in an inward-open conformation with an open HP2 loop, thereby inhibiting its reverse transport process. Conversely, the activator GT-949 appears to accelerate this process. These structural insights provide molecular details on ligand positioning and the mechanisms regulating EAAT2 activity. Overall, these structural data lay the foundation for understanding the structure-function relationship of EAAT2 and for the design of novel therapeutic modulators.
Keywords excitatory amino acid transporter;SLC1A2;neurodegenerative disease;Cryo-EM structure
[1] SUDHOF T C, MALENKA R C. Understanding synapses: Past, present, and future [J]. Neuron, 2008, 60 (3): 469-476.
[2] MAHMOUD S, GHARAGOZLOO M, SIMARD C, et al. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release[J]. Cells, 2019, 8 (2): 184
[3] FONTANA I C, SOUZA D G, SOUZA D O, et al. A medicinal chemistry perspective on excitatory amino acid transporter 2 dysfunction in neurodegenerative diseases[J]. Journal of Medicinal Chemistry, 2023, 66 (4): 2330-2346.
[4] KANAI Y, CLÉMENCEON B, SIMONIN A, et al. The SLC1 high-affinity glutamate and neutral amino acid transporter family[J]. Mol Aspects Med, 2013, 34 (2/3): 108-120.
[5] GREWER C, GAMEIRO A, RAUEN T. SLC1 glutamate transporters[J]. Pflugers Arch, 2014, 466 (1): 3-24.
[6] FRIEDMAN N, CHEN I, WU Q, et al. Amino acid transporters and exchangers from the SLC1A family: Structure, mechanism and roles in physiology and cancer[J]. Neurochem Res, 2020, 45 (6): 1268-1286.
[7] QIU B,BOUDKER O. Symport and antiport mechanisms of human glutamate transporters[J]. Nat Commun, 2023, 14 (1): 2579.
[8] LIN C L, KONG Q, CUNY G D, et al. Glutamate transporter EAAT2: A new target for the treatment of neurodegenerative diseases[J]. Future Med Chem, 2012, 4 (13): 1689-1700.
[9] TAKAHASHI K, FOSTER J B, LIN C L. Glutamate transporter EAAT2: Regulation, function, and potential as a therapeutic target for neurological and psychiatric disease[J]. Cell Mol Life Sci, 2015, 72 (18): 3489-3506.
[10] TIAN G, LAI L, GUO H, et al. Translational control of glial glutamate transporter EAAT2 expression [J]. Journal of Biological Chemistry, 2007, 282 (3): 1727-1737.
[11] MALIK A R, WILLNOW T E. Excitatory amino acid transporters in physiology and disorders of the central nervous system[J]. Int J Mol Sci, 2019, 20 (22): 5671.
[12] GALLLI A, MORETTI S, DULE N, et al. Hyperglycemia impairs EAAT2 glutamate transporter trafficking and glutamate clearance in islets of Langerhans: Implications for type 2 diabetes pathogenesis and treatment[J]. Am J Physiol Endocrinol Metab, 2024, 327 (1): e27-e41.
[13] LIMPERT A S, COSFORD N D. Translational enhancers of EAAT2: Therapeutic implications for neurodegenerative disease[J]. J Clin Invest, 2014, 124 (3): 964-967.
[14] WOOD O W G, YEUNG J H Y, FAULL R L M, et al. EAAT2 as a therapeutic research target in Alzheimer's disease: A systematic review[J]. Front Neurosci, 2022, 16: 952096.
[15] FONTANA A C, DE OLIVEIRA BELEBONI R, WOJEWODZIC M W, et al. Enhancing glutamate transport: Mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom[J]. Mol Pharmacol, 2007, 72 (5): 1228-1237.
[16] KORTAGERE S, MORTENSEN O V, XIA J, et al. Identification of novel allosteric modulators of glutamate transporter EAAT2[J]. ACS Chem Neurosci, 2018, 9 (3): 522-534.
[17] FORSTER Y M, GREEN J L, KHATIWADA A, et al. Elucidation of the structure and synthesis of neuroprotective low molecular mass components of the parawixia bistriata spider venom[J]. ACS Chem Neurosci, 2020, 11 (11): 1573-1596.
[18] LEI J, FRANK J. Automated acquisition of Cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope[J]. J Struct Biol, 2005, 150 (1): 69-80.
[19] ZHENG S Q, PALOVCAK E, ARMACHE J P, et al. MotionCor2: Anisotropic correction of beam-induced motion for improved Cryo-electron microscopy[J]. Nat Methods, 2017, 14 (4): 331-332.
[20] ZHANG K. Gctf: Real-time CTF determination and correction[J]. J Struct Biol, 2016, 193 (1): 1-12.
[21] ADAMS P D, AFONINE P V, BUNKÓCZI G, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution[J]. Acta Crystallogr D Biol Crystallogr, 2010, 66 (Pt 2): 213-221.
[22] EMSLEY P, LOHKAMP B, SCOTT W G, et al. Features and development of Coot[J]. Acta Crystallogr D Biol Crystallogr, 2010, 66 (Pt 4): 486-501.
[23] WINN M D, BALLARD C C, COWTAN K D, et al. Overview of the CCP4 suite and current developments[J]. Acta Crystallogr D Biol Crystallogr, 2011, 67 (Pt 4): 235-242.
[24] DUNLOP J, MCILVAIN H B, CARRICK T A, et al. Characterization of novel aryl-ether, biaryl, and fluorene aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT2[J]. Mol Pharmacol, 2005, 68 (4): 974-982.
[25] ZHANG Z, CHEN H, GENG Z, et al. Structural basis of ligand binding modes of human EAAT2[J]. Nat Commun, 2022, 13 (1): 3329.
[26] 张佳星,陈勇,李赛. 冷冻电镜断层成像技术破解重构新冠病毒全分子结构难题. [J]. 电子显微学报, 2020, 39(6):787-789.
[27] 朱东杰, 章新政. 冷冻电镜解析病毒颗粒中的蛋白质结构. [J]. 电子显微学报, 2023,42(1):94-103.
[28] VAN VEGGEL L, MOCKING T A M, SIJBEN H J, et al. Still in search for an EAAT activator: GT949 does not activate EAAT2, nor EAAT3 in impedance and radioligand uptake assays[J]. ACS Chem Neurosci, 2024, 15 (7): 1424-1431.