[1] TAYLOR NM, PROKHOROV NS, GUERRERO-FERREIRA RC, SHNEIDER MM, BROWNING C, GOLDIE KN, et al. Structure of the T4 baseplate and its function in triggering sheath contraction [J]. Nature, 2016, 533(7603): 346-52.
[2] YANG F, JIANG YL, ZHANG JT, ZHU J, DU K, YU RC, et al. Fine structure and assembly pattern of a minimal myophage Pam3 [J]. Proc Natl Acad Sci U S A, 2023, 120(4): e2213727120.
[3] LI F, HOU CD, LOKAREDDY RK, YANG R, FORTI F, BRIANI F, et al. High-resolution cryo-EM structure of the Pseudomonas bacteriophage E217 [J]. Nat Commun, 2023, 14(1): 4052.
[4] NOVáČEK J, ŠIBOROVá M, BENEŠíK M, PANTŮČEK R, DOŠKAŘ J, PLEVKA P. Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate [J]. Proc Natl Acad Sci U S A, 2016, 113(33): 9351-6.
[5] HENDRIX RW, SMITH MC, BURNS RN, FORD ME, HATFULL GF. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage [J]. Proc Natl Acad Sci U S A, 1999, 96(5): 2192-7.
[6] FOKINE A, ROSSMANN MG. Molecular architecture of tailed double-stranded DNA phages [J]. Bacteriophage, 2014, 4(1): e28281.
[7] VEESLER D, CAMBILLAU C. A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries [J]. Microbiol Mol Biol Rev, 2011, 75(3): 423-33.
[8] SALIH O, HE S, PLANAMENTE S, STACH L, MACDONALD JT, MANOLI E, et al. Atomic Structure of Type VI Contractile Sheath from Pseudomonas aeruginosa [J]. Structure, 2018, 26(2): 329-36.e3.
[9] GE P, SCHOLL D, PROKHOROV NS, AVAYLON J, SHNEIDER MM, BROWNING C, et al. Action of a minimal contractile bactericidal nanomachine [J]. Nature, 2020, 580(7805): 658-62.
[10] SHIKUMA NJ, PILHOFER M, WEISS GL, HADFIELD MG, JENSEN GJ, NEWMAN DK. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures [J]. Science (New York, NY), 2014, 343(6170): 529-33.
[11] JIANG F, LI N, WANG X, CHENG J, HUANG Y, YANG Y, et al. Cryo-EM Structure and Assembly of an Extracellular Contractile Injection System [J]. Cell, 2019, 177(2): 370-83.e15.
[12] YAP ML, KLOSE T, ARISAKA F, SPEIR JA, VEESLER D, FOKINE A, et al. Role of bacteriophage T4 baseplate in regulating assembly and infection [J]. Proc Natl Acad Sci U S A, 2016, 113(10): 2654-9.
[13] HU B, MARGOLIN W, MOLINEUX IJ, LIU J. Structural remodeling of bacteriophage T4 and host membranes during infection initiation [J]. Proc Natl Acad Sci U S A, 2015, 112(35): E4919-28.
[14] YU RC, YANG F, ZHANG HY, HOU P, DU K, ZHU J, et al. Structure of the intact tail machine of Anabaena myophage A-1(L) [J]. Nat Commun, 2024, 15(1): 2654.
[15] SONANI RR, PALMER LK, ESTEVES NC, HORTON AA, SEBASTIAN AL, KELLY RJ, et al. An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano [J]. Nat Commun, 2024, 15(1): 756.
[16] KWIATKOWSKI B, BOSCHEK B, THIELE H, STIRM S. Substrate specificity of two bacteriophage-associated endo-N-acetylneuraminidases [J]. J Virol, 1983, 45(1): 367-74.
[17] SCHWARZER D, BUETTNER FF, BROWNING C, NAZAROV S, RABSCH W, BETHE A, et al. A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis [J]. J Virol, 2012, 86(19): 10384-98.
[18] SCHWARZER D, BROWNING C, STUMMEYER K, OBERBECK A, MüHLENHOFF M, GERARDY-SCHAHN R, et al. Structure and biochemical characterization of bacteriophage phi92 endosialidase [J]. Virology, 2015, 477: 133-43.
[19] KWIATKOWSKI B, STIRM S. Polysialic acid depolymerase [J]. Methods Enzymol, 1987, 138: 786-92.
[20] SANTOS SB, KROPINSKI AM, CEYSSENS PJ, ACKERMANN HW, VILLEGAS A, LAVIGNE R, et al. Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: creation of a new phage genus [J]. J Virol, 2011, 85(21): 11265-73.
[21] SANTOS SB, FERNANDES E, CARVALHO CM, SILLANKORVA S, KRYLOV VN, PLETENEVA EA, et al. Selection and characterization of a multivalent Salmonella phage and its production in a nonpathogenic Escherichia coli strain [J]. Appl Environ Microbiol, 2010, 76(21): 7338-42.
[22] 秦逸澄, 刘蕴辉, 沈庆涛. 冷冻电镜研究野生型DegP降解底物的构象变化 %J 电子显微学报 [J]. 2023, 42(01): 30-8.
[23] 董全林, 蒋越凌, 王玖玖, 张春熹. 简述透射电子显微镜发展历程 %J 电子显微学报 [J]. 2022, 41(06): 685-8.
[24] 池希敏, 李晓荣, 黄邦栋, 周强. 人源硫酸盐转运蛋白DTDST的结构生物学研究 %J 电子显微学报 [J]. 2023, 42(01): 21-9.
[25] 常圣海, 张兴, 陈景华. 嗜热紫硫细菌RuBisCO的冷冻电镜结构研究 %J 电子显微学报 [J]. 2023, 42(01): 13-20.
[26] 朱东杰, 章新政. 冷冻电镜解析病毒颗粒中的蛋白质结构 %J 电子显微学报 [J]. 2023, 42(01): 94-103.
[27] KIMANIUS D, FORSBERG BO, SCHERES SH, LINDAHL E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 [J]. Elife, 2016, 5: e18722.
[28] ZHENG SQ, PALOVCAK E, ARMACHE JP, VERBA KA, CHENG Y, AGARD DA. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy [J]. Nat Methods, 2017, 14(4): 331-2.
[29] LUDTKE SJ, BALDWIN PR, CHIU W. EMAN: semiautomated software for high-resolution single-particle reconstructions [J]. J Struct Biol, 1999, 128(1): 82-97.
[30] FULLER SD, BUTCHER SJ, CHENG RH, BAKER TS. Three-dimensional reconstruction of icosahedral particles--the uncommon line [J]. J Struct Biol, 1996, 116(1): 48-55.
[31] THUMAN-COMMIKE PA, CHIU W. Improved common line-based icosahedral particle image orientation estimation algorithms [J]. Ultramicroscopy, 1997, 68(4): 231-55.
[32] LI X, ZHOU N, CHEN W, ZHU B, WANG X, XU B, et al. Near-Atomic Resolution Structure Determination of a Cypovirus Capsid and Polymerase Complex Using Cryo-EM at 200kV [J]. J Mol Biol, 2017, 429(1): 79-87.
[33] CHEN W, XIAO H, WANG X, SONG S, HAN Z, LI X, et al. Structural changes of a bacteriophage upon DNA packaging and maturation [J]. Protein Cell, 2020, 11(5): 374-9.
[34] CHEN S, MCMULLAN G, FARUQI AR, MURSHUDOV GN, SHORT JM, SCHERES SH, et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy [J]. Ultramicroscopy, 2013, 135: 24-35.
[35] EMSLEY P, COWTAN K. Coot: model-building tools for molecular graphics [J]. Acta Crystallogr D Biol Crystallogr, 2004, 60(Pt 12 Pt 1): 2126-32.
[36] AFONINE PV, POON BK, READ RJ, SOBOLEV OV, TERWILLIGER TC, URZHUMTSEV A, et al. Real-space refinement in PHENIX for cryo-EM and crystallography [J]. Acta Crystallogr D Struct Biol, 2018, 74(Pt 6): 531-44.
[37] PETTERSEN EF, GODDARD TD, HUANG CC, MENG EC, COUCH GS, CROLL TI, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers [J]. Protein Sci, 2021, 30(1): 70-82.
[38] PETTERSEN EF, GODDARD TD, HUANG CC, COUCH GS, GREENBLATT DM, MENG EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis [J]. J Comput Chem, 2004, 25(13): 1605-12.
[39] HELGSTRAND C, WIKOFF WR, DUDA RL, HENDRIX RW, JOHNSON JE, LILJAS L. The refined structure of a protein catenane: the HK97 bacteriophage capsid at 3.44 A resolution [J]. J Mol Biol, 2003, 334(5): 885-99.
[40] DEDEO CL, TESCHKE CM, ALEXANDRESCU AT. Keeping It Together: Structures, Functions, and Applications of Viral Decoration Proteins [J]. Viruses, 2020, 12(10): 1163.
[41] WANG C, ZENG J, WANG J. Structural basis of bacteriophage lambda capsid maturation [J]. Structure, 2022, 30(4): 637-45.e3.
[42] STONE NP, DEMO G, AGNELLO E, KELCH BA. Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure [J]. Nat Commun, 2019, 10(1): 4471.
[43] CHEN W, XIAO H, WANG L, WANG X, TAN Z, HAN Z, et al. Structural changes in bacteriophage T7 upon receptor-induced genome ejection [J]. Proc Natl Acad Sci U S A, 2021, 118(37): e2102003118.
[44] ZINKE M, SACHOWSKY KAA, ÖSTER C, ZINN-JUSTIN S, RAVELLI R, SCHRöDER GF, et al. Architecture of the flexible tail tube of bacteriophage SPP1 [J]. Nat Commun, 2020, 11(1): 5759.
[45] PENG Y, TANG H, XIAO H, CHEN W, SONG J, ZHENG J, et al. Structures of Mature and Urea-Treated Empty Bacteriophage T5: Insights into Siphophage Infection and DNA Ejection [J]. Int J Mol Sci, 2024, 25(15): 8479.
[46] XIAO H, TAN L, TAN Z, ZHANG Y, CHEN W, LI X, et al. Structure of the siphophage neck-Tail complex suggests that conserved tail tip proteins facilitate receptor binding and tail assembly [J]. PLoS Biol, 2023, 21(12): e3002441.
[47] ZHENG W, WANG F, TAYLOR NMI, GUERRERO-FERREIRA RC, LEIMAN PG, EGELMAN EH. Refined Cryo-EM Structure of the T4 Tail Tube: Exploring the Lowest Dose Limit [J]. Structure, 2017, 25(9): 1436-41.e2.
[48] GE P, SCHOLL D, LEIMAN PG, YU X, MILLER JF, ZHOU ZH. Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states [J]. Nat Struct Mol Biol, 2015, 22(5): 377-82.
[49] WANG Z, FOKINE A, GUO X, JIANG W, ROSSMANN MG, KUHN RJ, et al. Structure of Vibrio Phage XM1, a Simple Contractile DNA Injection Machine [J]. Viruses, 2023, 15(8): 1673.
[50] XU J, ERICSON CF, LIEN YW, RUTAGANIRA FUN, EISENSTEIN F, FELDMüLLER M, et al. Identification and structure of an extracellular contractile injection system from the marine bacterium Algoriphagus machipongonensis [J]. Nat Microbiol, 2022, 7(3): 397-410.
[51] KATSURA I. Determination of bacteriophage lambda tail length by a protein ruler [J]. Nature, 1987, 327(6117): 73-5.
[52] MAHONY J, ALQARNI M, STOCKDALE S, SPINELLI S, FEYEREISEN M, CAMBILLAU C, et al. Functional and structural dissection of the tape measure protein of lactococcal phage TP901-1 [J]. Scientific reports, 2016, 6: 36667.
[53] ARNAUD CA, EFFANTIN G, VIVèS C, ENGILBERGE S, BACIA M, BOULANGER P, et al. Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection [J]. Nat Commun, 2017, 8(1): 1953.
[54] BROWNING C, SHNEIDER MM, BOWMAN VD, SCHWARZER D, LEIMAN PG. Phage pierces the host cell membrane with the iron-loaded spike [J]. Structure, 2012, 20(2): 326-39.
[55] ZHENG J, CHEN W, XIAO H, YANG F, SONG J, CHENG L, et al. Asymmetric Structure of Podophage GP4 Reveals a Novel Architecture of Three Types of Tail Fibers [J]. J Mol Biol, 2023, 435(20): 168258.
[56] TU J, PARK T, MORADO DR, HUGHES KT, MOLINEUX IJ, LIU J. Dual host specificity of phage SP6 is facilitated by tailspike rotation [J]. Virology, 2017, 507: 206-15.
[57] BAYFIELD OW, SHKOPOROV AN, YUTIN N, KHOKHLOVA EV, SMITH JLR, HAWKINS D, et al. Structural atlas of a human gut crassvirus [J]. Nature, 2023, 617(7960): 409-16.
[58] SKOLNICK J, GAO M, ZHOU H, SINGH S. AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein Sequence, Structure, and Function [J]. J Chem Inf Model, 2021, 61(10): 4827-31.