嗜热红藻藻胆体光热稳定性研究与应用
李凯伦,李文军,马建飞*,秦 松*
(1.中国科学院烟台海岸带研究所,山东 烟台 264003;2.中国科学院大学,北京 100049;3.南开大学药物化学生物学全国重点实验室,生命科学学院,天津 300350)
摘 要 藻胆体作为蓝藻和红藻最主要的捕光蛋白复合体,主要功能是捕获光能和传递到类囊体膜内的光系统。本文研究了嗜热红藻藻胆体在高光强下的光稳定性和高温下的热稳定性,以嗜温红藻紫球藻的藻胆体作对照,不同时间梯度处理之后,测定二者蛋白功能完整性变化。结果表明,嗜热红藻在高光强和高温下的光热稳定性均比嗜温红藻要强,其光热稳定的性质,使得嗜热红藻藻胆体适合于应用于太阳能下的产光热的环境中,应用在光电转换的人工光合作用器件中。
关键词 嗜热红藻;藻胆体;光稳定性;热稳定性
中图分类号:Q51;Q71;Q336 文献标识码:ADoi:10.3969/j.issn.1000-6281.2025.01.007
Study and application of photothermal stability of the thermophilic red alga phycobilisome
LI Kailun#,LI Wenjun,MA Jianfei*,QIN Song*
(1.Yantai Institute of Coastal Zone,Chinese Academy of Sciences,Yantai Shandong 264003;2.University of Chinese Academy of Sciences,Beijing 100000;3.State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences,Nankai University,Tianjin 300350,China)
Abstract Phycobilisomes represent the primary light-harvesting protein complexes in cyanobacteria and red algae. They capture light energy and transfer it to the photosystems in the thylakoid membrane. This study investigates the photostability of phycobilisomes from thermophilic red algae under high light intensity and their thermal stability at elevated temperatures, employing phycobilisomes from the mesophilic red algae Porphyridium purpureum as a control. Following the completion of the designated treatment periods, an evaluation of the functional integrity of the proteins in both samples was conducted. The findings indicate that thermophilic red algae exhibit markedly elevated photothermal stability under conditions of elevated light and temperature when compared to mesophilic red algae. This enhanced photothermal stability suggests that phycobilisomes from thermophilic red algae are optimally suited for utilisation in solar-driven, heat-generating environments, offering a promising avenue for incorporation into photothermal conversion devices for artificial photosynthesis.
Keywords thermophilic red algae;phycobilisome;photostability;thermal stability
[1] BUICK R. The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archaean lakes[J]. Science, 1992, 255(5040):74-77.
[2] DALTON R. Microfossils: Squaring up over ancient life[J]. Nature, 2002, 417(6891):782-784.
[3] BRASIER M D, GREEN O R, JEPHCOAT A P, et al. Questioning the evidence for Earth's oldest fossils[J]. Nature, 2002, 416(6876):76-81.
[4] GLAZER A N. Light harvesting by phycobilisomes.[J]. Annual Review of Biophysics and Biophysical Chemistry, 1985, 14:47-77.
[5] ADIR N, DINES M, DAVID L, et al. Structural aspects of the assembly and disassembly of the phycobilisome[J]. Photosynthesis Research, 2007, 91(2/3):157.
[6] GLAZER A N. Phycobilisomes: Structure and dynamics.[J]. Annual Review of Microbiology, 1982, 36:173-198.
[7] WANG H, ZHENG Z, ZHENG L, et al. Mutagenic analysis of the bundle-shaped phycobilisome from Gloeobacter violaceus[J]. Photosynthesis Research, 2023, 158(2):81-90.
[8] HAN-WEI J, HSIANG-YI W, CHUN-HSIUNG W, et al. A structure of the relict phycobilisome from a thylakoid-free cyanobacterium[J]. Nature Communications, 2023, 14(1):8009.
[9] SUI S. Structure of phycobilisomes[J]. Annual Review of Biophysics, 2021,50:53-72.
[10] DUERRING M, HUBER R, BODE W, et al. Refined 3-dimensional structure of phycoerythrocyanin from the cyanobacterium mastigocladus-laminosus at 2.7-A[J]. Journal of Molecular Biology, 1990,211(3):633-644.
[11] ZILINSKAS B A, GREENWALD L S. Phycobilisome structure and function[J]. Photosynthesis Research, 1986,10(1/2):7-35.
[12] ADIR N, LERNER N. The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in phycobilisomes[J]. Journal of Biological Chemistry, 2003, 278(28):25926-25932.
[13] 董全林,蒋越凌,王玖玖,等. 简述透射电子显微镜发展历程[J]. 电子显微学报,2022,41(6):685-688.
[14] 汪进鸿,陈朕欣,邓竞,等. 透射电镜相机及单颗粒冷冻电镜数据预处理流程综述[J]. 电子显微学报,2022,41(6):654-663.
[15] ZHANG J, MA J, LIU D, et al. Structure of phycobilisome from the red alga Griffithsia pacifica[J]. Nature, 2017, 551(7678):57-63.
[16] MA J, YOU X, SUN S, et al. Structural basis of energy transfer in Porphyridium purpureum phycobilisome[J]. Nature, 2020, 579(7797):146-151.
[17] XIE M, LI W, LIN H, et al. Difference in light use strategy in red alga between Griffithsia pacifica and Porphyridium purpureum[J]. Scientific Reports, 2021, 11(1):14367.
[18] NIU N, LU L, PENG P, et al. The phycobilisome core-membrane linkers from Synechocystis sp. PCC 6803 and red-algae assemble in the same topology[J]. The Plant Journal,2021, 107(5):1420-1431.
[19] LIU H, ZHANG M M, WEISZ D A, et al. Structure of cyanobacterial phycobilisome core revealed by structural modeling and chemical cross-linking[J]. Science Advances, 2021, 7(2):2.
[20] ZHENG L, ZHENG Z, LI X, et al. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes[J]. Nature Communications, 2021, 12(1):5497.
[21] DOMÍNGUEZ-MARTÍN M A, SAUER P V, KIRST H, et al. Structures of a phycobilisome in light-harvesting and photoprotected states[J]. Nature, 2022, 609(7928):835-845.
[22] YOU X, ZHANG X, CHENG J, et al. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex[J]. Nature, 2023, 616(7955):199-206.
[23] YOON H S, CINIGLIA C, WU M, et al. Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta).[J]. Bmc Evolutionary Biology, 2006, 6(1):78.
[24] YOON H S, MULLER K M, SHEATH R G, et al. Defining the major lineages of red algae (rhodophyta)1[J]. Journal of Phycology, 2006, 42(2):482-492.
[25] YOON H S, HACKETT J D, CINIGLIA C, et al. A molecular timeline for the origin of photosynthetic eukaryotes.[J]. Molecular Biology and Evolution, 2004, 21(5):809-818.
[26] 张钊,董润敏,张莹,等. 基于负染-电镜的Aβ体外聚集表征测试要点分析[J]. 电子显微学报,2016,35(5):420-425.
[27] 路荣昭,于延利. 多变鱼腥藻藻胆体的分离和荧光鉴定其完整性与解离程度[J]. 水生生物学集刊,1984(4):427-434.
[28] MARCHETTO F, SANTAEUFEMIA S, LEBIEDZINSKA-ARCISZEWSKA M, et al. Dynamic adaptation of the extremophilic red microalga Cyanidioschyzon merolae to high nickel stress[J]. Plant Physiology and Biochemistry,2024,207: 108365.
.