扫描电镜二次电子探测器闪烁体导电层厚度对成像的影响
唐 净,唐 亮,宜旭张,吕俊霞*,张跃飞*,张 泽
(1.北京工业大学材料与制造学部,北京 100124; 2.浙江大学材料科学与工程学院,浙江 杭州 310027;3.桂林电子科技大学机电工程学院,广西 桂林 541004)
摘 要 扫描电镜原位高温成像技术是完成更高温度材料分析测试需求而发展的先进科学研究手段。为了进一步提高扫描电镜原位高温成像的图像质量,本文基于自主研发的扫描电子显微镜原位高温成像设备,研究了闪烁体前端导电层即铝膜的厚度对成像质量的影响。通过制备不同厚度的铝膜,以相同的放大倍率和工作距离在样品的同一区域实时观察闪烁体的铝膜对可见光的遮挡作用及成像效果。实验结果表明,镀有120 nm铝膜厚度的闪烁体更适用于高温成像。
关键词 扫描电镜;高温原位成像;闪烁体;铝膜厚度
中图分类号:TN16;TG115.21+5.3;TL812+.1
文献标识码:A doi10.3969/j.issn.1000-6281.2024.06.008
Effect of conductive layer thickness of scintillator on imaging in scanning electron microscopy secondary electron detector
TANG Jing1,TANG Liang3,ZHANG Yixu1, LU Junxia1*, ZHANG Yuefei2* ,ZHANG Ze1
(1.Department of Materials and Manufacturing,Beijing University of Technology,Beijing 100124;2.School of Materials Science and Engineering,Zhejiang University,Hangzhou Zhejiang 310027;3.School of Mechanical and Electrical Engineering,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)
Abstract In situ high temperature scanning electron microscopy (SEM) imaging is a critical technique for studying high-temperature resistant materials, such as metals and ceramics. To improve the image quality of in-situ high-temperature imaging, this study examined the effect of the conductive layer thickness at the front of scintillation body, namely the aluminum film. By preparing aluminum film of different thicknesses, the blocking effect of the film on visible light and the imaging effect of scintillator were observed in the same sample region under consistent magnification and working distance. Experimental results indicate that a 120 nm-thick aluminum film coating on the scintillator is optimal for high-temperature imaging.
Keywords SEM; high-temperature imaging; scintillator; coating thickness
[1] 甘玉雪, 杨锋, 吴杰, 等. 扫描电子显微镜在岩矿分析中的应用[J]. 电子显微学报, 2019, 38(3): 284-293.
[2] KANE G A, ANDERSEN D, FREY M D, et al. The effect of cooling conditions on Ti 6%Al 4%V microstructure observed using high-temperature in situ scanning electron microscopy [J]. Journal of Materials Research, 2021, 36(3): 717-728.
[3] TANG LIANG, CHENG XIAOPENG, WU RUI, et al. Monitoring the morphology evolution of LiNi0.8Mn0.1Co0.1O2 during high-temperature solid state synthesis via in situ SEM [J]. Journal of Energy Chemistry, 2022, 66: 9-15.
[4] GREGORI G, KLEEBE H J, SIEGELIN F, et al. In situ SEM imaging at temperatures as high as 1450℃[J]. Journal of Electron Microscopy, 2002, 51(6): 347-352.
[5] HEARD R, SIVIOUR C R, DRAGNEVSKI K. Investigating iron alloy phase changes using high temperature in situ SEM techniques[J]. Materials, 2022, 15(11): 3921.
[6] FRITZ R, KIENER D. Development and application of a heated in-situ SEM micro-testing device[J]. Measurement, 2017, 110: 356-366.
[7] MA JINYAO, LU JUNXIA, TANG LIANG, et al. A novel instrument for investigating the dynamic microstructure evolution of high temperature service materials up to 1150 ℃ in scanning electron microscope[J]. Review of Scientific Instruments, 2020, 91(4): 043704.
[8] JOACHIMI W, HEMMLEB M, GRAUEL U, et al. High-temperature BSE and EBAC electronics for ESEM[J]. Microscopy and Microanalysis, 2018, 24(S1): 694-695.
[9] 施明哲. 扫描电镜和能谱仪的原理与实用分析技术[M]. 工业和信息化部电子第五研究所:电子工业出版社, 2015.
[10] BOK J, LALINSKÝ O, HANUŠ M, et al. GAGG: ce single crystalline films: New perspective scintillators for electron detection in SEM[J]. Ultramicroscopy, 2016, 163: 1-5.
[11] CHENG S, NIKL M, BEITLEROVA A, et al. Ultrabright and highly efficient all‐inorganic zero‐dimensional perovskite scintillators[J]. Advanced Optical Materials, 2021, 9(13): 2100460.
[12] 王栋, 杨高照, 彭太平. ST401闪烁体形状与光反射膜对其光收集效率的影响[J]. 核技术, 2011, 34(12): 905-908.
[13] XU Y, HUO K, JIANG J, et al. Optical properties of plastic scintillators coated with copper, aluminum and silver by magnetron sputtering[J]. Thin Solid Films, 2009, 517(15): 4443-4447.
[14] SCHAUER P, LALINSKÝ O, KUČERA M. Overview of S(T)EM electron detectors with garnet scintillators: Some potentials and limits[J]. Microscopy Research and Technique, 2021, 84(4): 753-770.
[15] SCHAUER P. Comparison of photon transport efficiency in simple scintillation electron detector configurations for scanning electron microscope[J]. Microscopy Research and Technique, 2022, 85(5): 1870-1883.
[16] 王禹皓, 李春, 付秀华, 等. 可见光范围镀铝反射率的研究[J]. 长春理工大学学报(自然科学版), 2009, 32(1): 57-59.
[17] 唐亮, 刘陵恩, 徐晋勇, 等. 扫描电镜高温成像干扰分析及图像修复方法研究[J]. 电子显微学报, 2021, 40(5): 601-608.
[18] PODOR R, MENDONÇA J, LAUTRU J, et al. Evaluation and application of a new scintillator-based heat-resistant back-scattered electron detector during heat treatment in the scanning electron microscope[J]. Journal of Microscopy, 2021, 282(1): 45-59.
[19] ZHOU W, APKARIAN R, WANG Z L, et al. Fundamentals of scanning electron microscopy (SEM)[J]. Scanning Microscopy for Nanotechnology: Techniques and Applications, 2007: 1-40
[20] REIMER L. Scanning electron microscopy: Physics of image formation and microanalysis, second edition[J]. Measurement Science and Technology, 2000, 11(12): 1826-1826.
[21] EVERHART T E, THORNLEY R F M. Wide-band detector for micro-microampere low-energy electron currents[J]. Journal of Scientific Instruments, 1960, 37(7): 246-248.
[22] LECOQ P, GEKTIN A, KORZHIK M. Inorganic scintillators for detector systems[M]. Berlin, Germany: Springer, 2017.
[23] AUTRATA R, SCHAUER P, KVAPIL J, et al. Single-crystal aluminates - A new generation of scintillators for scanning electron-microscopes and transparent screens in electron-optical devices[J]. Scanning Electron Microscopy, 1983: 489-500.
[24] 张栓珠. 用卡诺定理推导热电子发射方程[J]. 长治学院学报, 2008, 25(2): 60-61.
[25] ZHANG Y, TANG L, WANG Y, et al. Development and application of a heating system for in situ scanning electron microscope[J/OL]. SSRN Electronic Journal, 2022.
[26] SIM K S, NIA M E, TSO C P. Noise variance estimation using image noise cross‐correlation model on SEM images[J]. Scanning, 2013, 35(3): 205-212.
[27] KOHO S, FAZELI E, et al. Image quality ranking method for microscopy[J]. Scientific reports, 2016, 6(1): 1-15.
[28] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “Completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.