基于机器学习的原子识别以及非线性漂移校正

黄子扬,刘 曦,王怀远,黄瑞龙,郑 赫*,赵培丽,贾双凤,王建波*

基于机器学习的原子识别以及非线性漂移校正
黄子扬,刘 曦,王怀远,黄瑞龙,郑  赫*,赵培丽,贾双凤,王建波*
(1. 武汉大学物理科学与技术学院,电子显微镜中心,人工微结构教育部重点实验室和高等研究院,
湖北 武汉  430072; 2. 武汉大学科研公共服务条件平台,湖北  武汉   430072)

摘    要    球差校正扫描透射电子显微镜(scanning transmission electron microscope,STEM)是一种重要的微观结构表征手段。然而,由于电子束和样品漂移等问题,极大影响了STEM图像的质量和后续分析。针对上述问题,本文引入机器学习,改进了原子识别的方法,并在此基础上进行了元素分类;另外,针对单张STEM图像,在原子识别的基础上,提出了快速非线性漂移校正的方法,解决了以往漂移校正方法依赖较多数据的问题,此方法适用于辐照敏感材料的漂移校正,显著提高了STEM图像的解析效率。
关键词    非线性漂移校正;原子识别;机器学习;透射电子显微学
中图分类号:TG115. 21+ 5. 3; O766+. 1; O799; O722+. 4; O739; TN16   
文献标识码: A    doi:10.3969/j.issn.1000-    6281.2024.04.005
 

Atomic identification and nonlinear drift correction based on machine learning
HUANG Ziyang1, LIU Xi1, WANG Huaiyuan1, HUANG Ruilong1, ZHENG He1*, ZHAO Peili1, JIA Shuangfeng1, WANG Jianbo1, 2*
(1. School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan Hubei 430072; 2. Core Facility of Wuhan University, Wuhan Hubei 430072 , China)

Abstract     Spherical aberration-corrected scanning transmission electron microscopy (STEM) is a crucial tool for characterizing microscale structures. However, issues such as electron beam and sample drift can significantly affect the quality of STEM images and subsequent analysis. To address these challenges, this paper introduced a machine learning approach to improve atomic identification, followed by elemental classification. Additionally, a rapid nonlinear drift correction method for a single STEM image was proposed, building upon atomic identification. This method overcomed the previous data-dependency issue in drift correction and was applicable for drift correction in radiation-sensitive materials. It significantly enhanced the resolution efficiency of STEM images.
keywords    nonlinear drift correction; atomic identification; machine learning; transmission electron microscopy