小尺寸金属纳米线力学行为的原位电镜研究进展
叶锡涛,陈国靖,符立波*,谢 盼,王立华, 韩晓东,陈江华*- 摘要
- 参考文献
- 相关文章
小尺寸金属纳米线力学行为的原位电镜研究进展
叶锡涛,陈国靖,符立波*,谢 盼,王立华, 韩晓东,陈江华*
(1.海南大学 皮米电镜中心,海南 海口 570228;2.北京工业大学 固体微结构与性能北京市重点实验室,北京 100124)
摘 要 金属纳米线在信息采集、存储以及超灵敏传感器等方面被广泛应用。在实际应用中,金属纳米线常处于应力状态下,对关键器件的性能稳定性有直接影响。原位研究金属纳米线在应力作用下的塑性变形原子机制是确保重要元器件在复杂环境下依旧保持稳定的物理性能输出的实验依据。本文介绍了纳米力学原位实验技术的研究进展和纳米材料力学性能曲线的测量策略;在此基础上,从材料的尺寸效应出发,总结了不同直径尺寸金属纳米线的位错、孪晶、表面原子扩散等变形机制与纳米线力学性能之间的相关性;展望了小尺寸金属纳米线原位纳米力学技术和原位实验研究的发展方向。
关键词 原位研究;透射电子显微镜;原子尺度;金属纳米线;变形机制
中图分类号:TG115.21 + 5.3;O76;O733 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.02.016
Research progress on mechanical behavior of small-sized metallic nanowires studied by in-situ TEM
YE Xitao1,CHEN Guojing1,FU Libo1*,XIE Pan1,WANG Lihua2,
HAN Xiaodong2,CHEN Jianghua1*
(1. Pico Electron Microscopy Center, College of Materials Science and Engineering, Hainan University, Haikou Hainan 570228;
2. Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124,China)
Abstract Metallic nanowires are widely used in information collection, storage and ultra-sensitive sensors. In practical applications, metallic nanowires are often in a stress state, directly affecting the performance and stability of key devices. The in-situ study of the atomic mechanism of the plastic deformation of metallic nanowires under stress is the experimental basis to ensure the stable physical performance output of important components in complex environments. In this review, we introduced the research progress of in-situ experimental technology of nanomechanics and the measurement strategy of mechanical property curves of nanomaterials. On the basis of the size effect of materials, the correlation between deformation mechanisms such as dislocations, twins, surface atomic diffusion and mechanical properties of metallic nanowires with different diameter sizes was summarized. The development direction of in-situ nanomechanical technology and the prospect of in-situ experimental research on small metal nanowires were discussed.
Keywords in-situ; transmission electron microscopy; atomic-scale; metallic nanowire; deformation mechanism
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] ACAR P. Recent progress of uncertainty quantification in small-scale materials science [J]. Progress in Materials Science, 2021, 117: 100723.
[2] NASR ESFAHANI M, ALACA B E. A review on size-dependent mechanical properties of nanowires [J]. Advanced Engineering Materials, 2019, 21(8): 1900192.
[3] LU J, CHEN Z H, MA Z F, et al. The role of nanotechnology in the development of battery materials for electric vehicles [J]. Nat Nanotechnol, 2016, 11: 1031-1038.
[4] 韩晓东, 张泽. 原子点阵分辨率下的原位力学性能实验[J]. 电子显微学报, 2010, 29(3): 191-212.
[5] COLLA M S, AMIN-AHMADI B, IDRISSI H, et al. Dislocation-mediated relaxation in nanograined columnar palladium films revealed by on-chip time-resolved HRTEM testing [J]. Nat Commun, 2015, 6: 5922.
[6] WANG G, LIAN J, JIANG Q, et al. High resolution transmission electron microscopic in-situ observations of plastic deformation of compressed nanocrystalline gold [J]. Journal of Applied Physics, 2014, 116(10): 103518.
[7] ZHU Y T, LIAO X Z, WU X L. Deformation twinning in nanocrystalline materials [J]. Progress in Materials Science, 2012, 57(1): 1-62.
[8] WANG C, DU K, SONG K, et al. Size-dependent grain-boundary structure with improved conductive and mechanical stabilities in sub-10-nm gold crystals [J]. Phys Rev Lett, 2018, 120(18): 186102.
[9] CHEN Y, FAN Z, ZHANG Z, et al. Two-dimensional metal nanomaterials: Synthesis, properties, and applications [J]. Chem Rev, 2018, 118(13): 6409-6455.
[10] WANG L H, ZHANG Z, HAN X D. In situ experimental mechanics of nanomaterials at the atomic scale [J]. NPG Asia Materials, 2013, 5(2): e40.
[11] ZHU T, LI J. Ultra-strength materials [J]. Progress in Materials Science, 2010, 55(7): 710-757.
[12] WANG L H, TENG J, SHA X C, et al. Plastic deformation through dislocation saturation in ultrasmall pt nanocrystals and its in situ atomistic mechanisms [J]. Nano Lett, 2017, 17(8): 4733-4739.
[13] WANG L, KONG D, ZHANG Y, et al. Mechanically driven grain boundary formation in nickel nanowires [J]. ACS Nano, 2017, 11(12): 12500-12508.
[14] WU B, HEIDELBERG A, BOLAND J J. Mechanical properties of ultrahigh-strength gold nanowires [J]. Nat Mater, 2005, 4(7): 525-529.
[15] SEO J H, YOO Y, PARK N Y, et al. Superplastic deformation of defect-free Au nanowires via coherent twin propagation [J]. Nano Lett, 2011, 11(8): 3499-3502.
[16] WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277: 1971-1975.
[17] 赵玉峰, 李雪峤, 王立华, 等. 面心立方结构金属纳米线弯曲变形机制研究进展[J]. 电子显微学报, 2023, 42(2): 238-251.
[18] LI X, NARDI P, BAEK C-W, et al. Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope [J]. Journal of Micromechanics and Microengineering, 2005, 15(3): 551-556.
[19] HOFFMANN S, UTKE I, MOSER B, et al. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires [J]. Nano Lett, 2006, 6(4): 622-625.
[20] YU M F, LOURIE O, DYER M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load [J]. Science, 2000, 287(5453): 637-640.
[21] IMRICH P J, KIRCHLECHNER C, MOTZ C, et al. Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary [J]. Acta Materialia, 2014, 73: 240-250.
[22] JIN M, MINOR A M, STACH E A, et al. Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature [J]. Acta Materialia, 2004, 52(18): 5381-5387.
[23] LEGROS M, GIANOLA D S, HEMKER K J. TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films [J]. Acta Materialia, 2008, 58: 3380-3393.
[24] ZHU Q, CAO G, WANG J W, et al.In situ atomistic observation of disconnection-mediated grain boundary migration [J]. Nat Commun, 2019, 10(1): 156.
[25] WANG L H, TENG J, LIU P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum [J]. Nat Commun, 2014, 5: 4402.
[26] ZHANG J, LI Y, LI X, et al. Timely and atomic-resolved high-temperature mechanical investigation of ductile fracture and atomistic mechanisms of tungsten [J]. Nat Commun, 2021, 12(1): 2218.
[27] UCHIC M D, DIMIDUK D M, FLORANDO J N, et al. Sample dimensions influence strength and crystal plasticity [J]. Science, 2004, 305(5686): 986-989.
[28] SHAN Z W, MISHRA R K, SYED ASIF S A, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter ni crystals [J]. Nat Mater, 2008, 7(2): 115-119.
[29] OH S H, LEGROS M, KIENER D, et al. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal [J]. Nat Mater, 2009, 8(2): 95-100.
[30] YU Q, SHAN Z W, LI J, et al. Strong crystal size effect on deformation twinning [J]. Nature, 2010, 463(7279): 335-338.
[31] KIENER D, MINOR A M. Source truncation and exhaustion: Insights from quantitative in situ TEM tensile testing [J]. Nano Lett, 2011, 11(9): 3816-3820.
[32] LEE G, KIM J-Y, BUREK M J, et al. Plastic deformation of indium nanostructures [J]. Materials Science and Engineering: A, 2011, 528(19/20): 6112-6120.
[33] SHAN Z W, STACH E A, WIEZOREK J M K, et al. Grain boundary–mediated plasticity in nanocrystalline nickel [J]. Science, 2004, 305: 654-657.
[34] KIENER D, GROSINGER W, DEHM G, et al. A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples [J]. Acta Materialia, 2008, 56(3): 580-592.
[35] GOLBERG D, COSTA P M F J, LOURIE O, et al. Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes [J]. Nano Lett, 2007, 7: 2146-2151.
[36] 孙世铎. 原子尺度下超细银纳米线变形机制的原位透射电镜研究[D]. 北京:北京工业大学, 2019.
[37] 卢艳, 王立华, 邓青松,等. 体心立方金属Mo 纳米线拉伸塑性行为的原位透射电子显微镜观察[J]. 电子显微学报, 2014, 33(4): 289-294.
[38] LEGROS M. In situ mechanical TEM: Seeing and measuring under stress with electrons [J]. Comptes Rendus Physique, 2014, 15(2-3): 224-240.
[39] ESPINOSA H D, BERNAL R A, FILLETER T. In situ TEM electromechanical testing of nanowires and nanotubes [J]. Small, 2012, 8(21): 3233-3252.
[40] 符立波, 王立华, 李志鹏, 等. 原子尺度分辨的晶界力学行为TEM 原位研究[J]. 电子显微学报, 2018, 37(5): 397-407.
[41] SUN L, BANHART F, KRASHENINNIKOV A V, et al. Carbon nanotubes as high-pressure cylinders and nanoextruders [J]. Science, 2006, 312: 1199-1202.
[42] FU L B, KONG D L, YANG C P, et al. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire [J]. Journal of Materials Science & Technology, 2022, 101: 95-106.
[43] SUN S D, KONG D L, LI D H, et al. Atomistic mechanism of stress-induced combined slip and diffusion in sub-5 nanometer-sized Ag nanowires [J]. ACS Nano, 2019, 13(8): 8708-8716.
[44] WU X L, YANG M X, YUAN F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc Natl Acad Sci U S A, 2015, 112(47): 14501-14505.
[45] ZHU Z L, MA J A, WANG Z L, et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: The role of graphene quantum dots [J]. Journal of the American Chemical Society, 2014, 136(10): 3760-3763.
[46] LU Y, SONG J, HUANG J Y, et al. Fracture of sub-20nm ultrathin gold nanowires [J]. Advanced Functional Materials, 2011, 21(20): 3982-3989.
[47] GREER J R, OLIVER W C, NIX W D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients [J]. Acta Materialia, 2005, 53(6): 1821-1830.
[48] CAO G, WANG J W, DU K, et al. Superplasticity in gold nanowires through the operation of multiple slip systems [J]. Advanced Functional Materials, 2018, 28(51): 1805258.
[49] LIU P, WANG L H, YUE Y H, et al. Room-temperature superplasticity in Au nanowires and their atomistic mechanisms [J]. Nanoscale, 2019, 11(18): 8727-8735.
[50] FU L, YANG C, WEI R, et al. In situ atomic-scale observation of AuCu alloy nanowire with superplasticity and high strength at room temperature [J]. Materials Today Nano, 2021, 15: 100123.
[51] YOUSSEF K M, SCATTERGOOD R O, MURTY K L, et al. Ultrahigh strength and high ductility of bulk nanocrystalline copper [J]. Applied Physics Letters, 2005, 87(9): 091904.
[52] GREER J R, NIX W D. Size dependence in mechanical properties of gold at the micron scale in the absence of strain gradients [J]. Applied Physics A, 2008, 90: 203.
[53] GREER J R, NIX W D. Nanoscale gold pillars strengthened through dislocation starvation [J]. Physical Review B, 2006, 73: 245410.
[54] VOLKERT C A, LILLEODDEN E T. Size effects in the deformation of sub-micron Au columns [J]. Philosophical Magazine, 2006, 86(33-35): 5567-5579.
[55] PENG S Y, WEI Y J, GAO H J. Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength [J]. Proc Natl Acad Sci U S A, 2020, 117(10): 5204-5209.
[56] WEINBERGER C R, CAI W. Plasticity of metal nanowires [J]. Journal of Materials Chemistry, 2012, 22(8): 3277-3292.
[57] ZEPEDA-RUIZ L A, STUKOWSKI A, OPPELSTRUP T, et al. Probing the limits of metal plasticity with molecular dynamics simulations [J]. Nature, 2017, 550: 492-495.
[58] LU Y, PENG C, GANESAN Y, et al. Quantitative in situ TEM tensile testing of an individual nickel nanowire [J]. Nanotechnology, 2011, 22(35): 355702.
[59] ZHOU C Z, BEYERLEIN I J, LESAR R. Plastic deformation mechanisms of FCC single crystals at small scales [J]. Acta Materialia, 2011, 59(20): 7673-7682.
[60] OH S H, LEGROS M, KIENER D, et al. In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale [J]. Acta Materialia, 2007, 55(16): 5558-5571.
[61] YIN S, CHENG G M, RICHTER G, et al. Transition of deformation mechanisms in single-crystalline metallic nanowires [J]. ACS Nano, 2019, 13(8): 9082-9090.
[62] WANG J W, ZENG Z, WEINBERGER C R, et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten [J]. Nat Mater, 2015, 14(6): 594-600.
[63] EL-AWADY J A, WEN M, GHONIEM N M. The role of the weakest-link mechanism in controlling the plasticity of micropillars [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(1): 32-50.
[64] CAO Y, WANG Y B, AN X H, et al. Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion [J]. Acta Materialia, 2014, 63: 16-29.
[65] KUMAR K S, SURESH S, CHISHOLM M F, et al. Deformation of electrodeposited nanocrystalline nickel [J]. Acta Materialia, 2003, 51: 387–405.
[66] VAN SWYGENHOVEN H, DERLET P M, FROSETH A G. Stacking fault energies and slip in nanocrystalline metals [J]. Nat Mater, 2004, 3(6): 399-403.
[67] WANG L H, LIU P, GUAN P F, et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit [J]. Nat Commun, 2013, 4: 2413.
[68] YAGHOOBI M, VOYIADJIS G Z. Size effects in FCC crystals during the high rate compression test [J]. Acta Materialia, 2016, 121: 190-201.
[69] ANDERSON P M, HIRTH J P, LOTHE J. Theory of dislocations (3rd ed) [M]. US:New York, 2017: 32e917.
[70] SHANTHRAJ P, ZIKRY M A. Dislocation density evolution and interactions in crystalline materials [J]. Acta Materialia, 2011, 59(20): 7695-7702.
[71] 蒙月, 王立华, 张泽, 等. 多晶Au 纳米线大塑性变形的原位透射电子显微镜研究[J]. 电子显微学报, 2014, 33(4): 295-299.
[72] WANG L, GUAN P, TENG J, et al. New twinning route in face-centered cubic nanocrystalline metals [J]. Nat Commun, 2017, 8(1): 2142.
[73] YUE Y H, LIU P, ZHANG Z, et al. Approaching the theoretical elastic strain limit in copper nanowires [J]. Nano Lett, 2011, 11(8): 3151-3155.
[74] SEO J H, PARK H S, YOO Y, et al. Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires [J]. Nano Lett, 2013, 13(11): 5112-5116.
[75] DENG C, SANSOZ F. Near-ideal strength in gold nanowires achieved through microstructural design [J]. ACS Nano, 2009, 3(10): 3001-3008.
[76] WANG J W, SANSOZ F, DENG C, et al. Strong hall-petch type behavior in the elastic strain limit of nanotwinned gold nanowires [J]. Nano Lett, 2015, 15(6): 3865-3870.
[77] WANG J W, SANSOZ F, HUANG J Y, et al. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins [J]. Nat Commun, 2013, 4: 1742.
[78] WANG L H, DU K, YANG C P, et al. In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum [J]. Nat Commun, 2020, 11(1): 1167.
[79] ZHONG L, SANSOZ F, HE Y, et al. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals [J]. Nat Mater, 2017, 16(4): 439-445.
[80] DIAO J, GALL K, DUNN M L. Surface-stress-induced phase transformation in metal nanowires [J]. Nat Mater, 2003, 2(10): 656-660.
[81] SUN J, HE L, LO Y C, et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles [J]. Nat Mater, 2014, 13(11): 1007-1012.
[82] GREER J R, DE HOSSON J T M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect [J]. Progress in Materials Science, 2011, 56(6): 654-724.
[83] LEE S W, KIM J T, HONG S H, et al. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite [J]. Sci Rep, 2014, 4: 6500.
[84] QI L, CHRZAN D C. Tuning ideal tensile strengths and intrinsic ductility of BCC refractory alloys [J]. Phys Rev Lett, 2014, 112(11): 115503.
[85] KIM J Y, JONG D C, GREER J R. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale [J]. Acta Materialia, 2010, 58(7): 2355-2363.
[86] HUANG L, LI Q J, SHAN Z W, et al. A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum [J]. Nat Commun, 2011, 2: 547.
[87] GREER J R, WEINBERGER C R, CAI W. Comparing the strength of FCC and BCC Sub-micrometer pillars: Compression experiments and dislocation dynamics simulations [J]. Materials Science and Engineering: A, 2008, 493: 21-25.
[88] 王倩男. 体心立方金属纳米线变形行为的原位电镜研究[D]. 杭州:浙江大学, 2019.
[89] LIANG W W, ZHOU M. Atomistic simulations reveal shape memory of FCC metal nanowires [J]. Physical Review B, 2006, 73: 115409.
[90] BUENCONSEJO P J S, KIM H Y, HOSODA H, et al. Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy [J]. Acta Materialia, 2009, 57: 1068–1077.
[91] TADMOR E B, HAI S. A peierls criterion for the onset of deformation twinning at a crack tip [J]. Journal of the Mechanics and Physics of Solids, 2003, 51: 765–793.
[92] ITO K, VITEK V. Atomistic study of non-schmid effects in the plastic yielding of BCC metals [J]. Philosophical Magazine A, 81: 1387-1407.
[93] LI S Z, DING X D, DENG J K, et al. Superelasticity in BCC nanowires by a reversible twinning mechanism [J]. Physical Review B, 2010, 82(20): 205435.
[94] WANG Q, WANG J, LI J, et al. Consecutive crystallographic reorientations and superplasticity in body-centered cubic niobium nanowires [J]. Sci Adv, 2018, 4(7): eaas8850.
[95] LIU G, ZHANG G J, JIANG F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat Mater, 2013, 12(4): 344-350.
[96] EL-AWADY J A. Unravelling the physics of size-dependent dislocation-mediated plasticity [J]. Nat Commun, 2015, 6: 5926.
[97] FU H H, BENSON D J, MEYERS M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Materialia, 2001, 49: 2567–2582.
[98] BITZEK E, BRANDL C, DERLET P M, et al. Dislocation cross-slip in nanocrystalline FCC metals [J]. Phys Rev Lett, 2008, 100(23): 235501.