[1] LUGER K, MADER A W, RICHMOND R K, et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution [J]. Nature, 1997, 389(6648): 251-260.
[2] BOWMAN G D, POIRIER M G. Post-translational modifications of histones that influence nucleosome dynamics [J]. Chem Rev, 2015, 115(6): 2274-2295.
[3] OU H D, PHAN S, DEERINCK T J, et al. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells [J]. Science, 2017, 357(6349).
[4] FARR S E, WOODS E J, JOSEPH J A, et al. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions [J]. Nat Commun, 2021,12(1):2883.
[5] ZHANG Y, KUTATELADZE T G. Liquid–liquid phase separation is an intrinsic physicochemical property of chromatin [J]. Nature Structural & Molecular Biology, 2019, 26(12): 1085-1086.
[6] GIBSON B A, DOOLITTLE L K, SCHNEIDER M W G, et al. Organization of chromatin by intrinsic and regulated phase separation [J]. Cell, 2019, 179(2): 470-484 e421.
[7] ROBINSON P J, FAIRALL L, HUYNH V A, et al. EM measurements define the dimensions of the "30-nm" chromatin fiber: Evidence for a compact, interdigitated structure [J]. Proc Natl Acad Sci USA, 2006, 103(17): 6506-6511.
[8] SONG F, CHEN P, SUN D, et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units [J]. Science, 2014, 344(6182): 376-380.
[9] FINCH J T, KLUG A. Solenoidal model for superstructure in chromatin [J]. Proc Natl Acad Sci USA, 1976, 73(6): 1897-1901.
[10] WIDOM J, KLUG A. Structure of the 300A chromatin filament: X-ray diffraction from oriented samples [J]. Cell, 1985, 43(1): 207-213.
[11] BELMONT A S, BRUCE K. Visualization of G1 chromosomes: A folded, twisted, supercoiled chromonema model of interphase chromatid structure [J]. J Cell Biol, 1994, 127(2): 287-302.
[12] 丁明孝. 电镜技术解析出30nm染色质的双螺旋结构[J]. 电子显微镜学报,2014, 33(3) : 96-98.
[13] MAESHIMA K, IMAI R, TAMURA S, et al. Chromatin as dynamic 10-nm fibers [J]. Chromosoma, 2014, 123(3): 225-237.
[14] MAESHIMA K, IMAI R, HIKIMA T, et al. Chromatin structure revealed by X-ray scattering analysis and computational modeling [J]. Methods, 2014, 70(2/3): 154-161.
[15] RAZIN S V, GAVRILOV A A. Chromatin without the 30-nm fiber: Constrained disorder instead of hierarchical folding [J]. Epigenetics, 2014, 9(5): 653-657.
[16] CAI S, BOCK D, PILHOFER M, et al. The in situ structures of mono-, di-, and trinucleosomes in human heterochromatin [J]. Mol Biol Cell, 2018, 29(20): 2450-2457.
[17] ELTSOV M, MACLELLAN K M, MAESHIMA K, et al. Analysis of Cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ [J]. Proc Natl Acad Sci U S A, 2008, 105(50): 19732-19737.
[18] ELTSOV M, GREWE D, LEMERCIER N, et al. Nucleosome conformational variability in solution and in interphase nuclei evidenced by Cryo-electron microscopy of vitreous sections [J]. Nucleic Acids Res, 2018, 46(17): 9189-9200.
[19] NISHINO Y, ELTSOV M, JOTI Y, et al. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure [J]. EMBO J, 2012, 31(7): 1644-1653.
[20] MAESHIMA K, ROGGE R, TAMURA S, et al. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers [J]. EMBO J, 2016, 35(10): 1115-1132.
[21] STROM A R, EMELYANOV A V, MIR M, et al. Phase separation drives heterochromatin domain formation [J]. Nature, 2017, 547(7662): 241-245.
[22] SANULLI S, TRNKA M J, DHARMARAJAN V, et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin [J]. Nature, 2019, 575(7782): 390-394.
[23] HUBSTENBERGER A, COUREL M, BENARD M, et al. P-body purification reveals the condensation of repressed mRNA regulons [J]. Mol Cell, 2017, 68(1): 144-157 e145.
[24] BOEYNAEMS S, ALBERTI S, FAWZI N L, et al. Protein phase separation: A new phase in cell biology [J]. Trends Cell Biol, 2018, 28(6): 420-435.
[25] BANANI S F, LEE H O, HYMAN A A, et al. Biomolecular condensates: organizers of cellular biochemistry [J]. Nat Rev Mol Cell Biol, 2017, 18(5): 285-298.
[26] SANULLI S, Narlikar G J. Liquid-like interactions in heterochromatin: Implications for mechanism and regulation [J]. Curr Opin Cell Biol, 2020, 64: 90-96.
[27] BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation [J]. Science, 2009, 324(5935): 1729-1732.
[28] ERDEL F, RIPPE K. Formation of chromatin subcompartments by phase separation [J]. Biophys J, 2018, 114(10): 2262-2270.
[29] HYMAN A A, WEBER C A, JULICHER F. Liquid-liquid phase separation in biology [J]. Annu Rev Cell Dev Biol, 2014, 30: 39-58.
[30] PALIKYRAS S, PAPANTONIS A. Modes of phase separation affecting chromatin regulation [J]. Open Biology, 2019, 9(10): 190167.
[31] SHAKYA A, PARK S, RANA N, et al. Liquid-liquid phase separation of histone proteins in cells: Role in chromatin organization [J]. Biophys J, 2020, 118(3): 753-764.
[32] SHIN Y, CHANG Y C, LEE D S W, et al. Liquid nuclear condensates mechanically sense and restructure the genome [J]. Cell, 2018, 175(6): 1481-1491 e1413.
[33] WRIGHT R H G, LE DILY F, BEATO M. ATP, Mg(2+), nuclear phase separation, and genome accessibility [J]. Trends Biochem Sci, 2019, 44(7): 565-574.
[34] NOZAWA R S, YAMAMOTO T, TAKAHASHI M, et al. Nuclear microenvironment in cancer: Control through liquid-liquid phase separation [J]. Cancer Science, 2020, 111(9): 3155-3163.
[35] BANCAUD A, HUET S, DAIGLE N, et al. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin [J]. EMBO J, 2009, 28(24): 3785-3798.
[36] IMAI R, NOZAKI T, TANI T, et al. Density imaging of heterochromatin in live cells using orientation-independent-DIC microscopy [J]. Mol Biol Cell, 2017, 28(23): 3349-3359.
[37] ERCIUS P, ALAIDI O, RAMES M J, et al. Electron tomography: A three-dimensional analytic tool for hard and soft materials research [J]. Advanced Materials, 2015, 27(38): 5638-5663.
[38] ZHANG L, REN G. IPET and FETR: Experimental approach for studying molecular structure dynamics by Cryo-electron tomography of a single-molecule structure [J]. PloS one, 2012, 7(1): e30249.
[39] CHEN M, DAI W, SUN S Y, et al. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms [J]. Nat Methods, 2017, 14(10): 983-985.
[40] NARAYAN K, SUBRAMANIAM S. Focused ion beams in biology [J]. Nat Methods, 2015, 12(11): 1021-1031.
[41] LEI D, MARRAS A E, LIU J, et al. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography [J]. Nature Communications, 2018, 9(1): 592.
[42] ZHANG L, LEI D, SMITH J M, et al. Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography [J]. Nature Communications, 2016, 7: 11083.
[43] JORDAN M A, DIENER D R, STEPANEK L, et al. The Cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia [J]. Nat Cell Biol, 2018, 20(11): 1250-1255.
[44] SCHALCH T, DUDA S, SARGENT D F, et al. X-ray structure of a tetranucleosome and its implications for the chromatin fibre [J]. Nature, 2005, 436(7047): 138-141.
[45] DING X, LIN X, ZHANG B. Stability and folding pathways of tetra-nucleosome from six-dimensional free energy surface [J]. Nat Commun, 2021, 12(1): 1091.
[46] ZHANG M, DIAZ-CELIS C, ONOA B, et al. Molecular organization of the early stages of nucleosome phase separation visualized by cryo-electron tomography [J]. Mol Cell, 2022, 82(16): 3000-3014 e3009.
[47] RAMES M, YU Y D, REN G. Optimized negative staining: Ahigh-throughput protocol for examining small and asymmetric protein structure by electron microscopy [J]. Jove-J Vis Exp,2014, (90).:e51087.
[48] HAN B G, WATSON Z, KANG H, et al. Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules [J]. J Struct Biol, 2016, 195(2): 238-244.
[49] BUCHHOLZ T O, KRULL A, SHAHIDI R, et al. Content-aware image restoration for electron microscopy [J]. Methods Cell Biol, 2019, 152: 277-289.
[50] WEIGERT M, SCHMIDT U, BOOTHE T, et al. Content-aware image restoration: Pushing the limits of fluorescence microscopy [J]. Nat Methods, 2018, 15(12): 1090-1097.
[51] ZHAI X, LEI D, ZHANG M, et al. LoTToR: An algorithm for missing-wedge correction of the low-tilt tomographic 3D reconstruction of a single-molecule structure [J]. Sci Rep, 2020, 10(1): 10489.
[52] ESTER M, KRIEGEL H-P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise.Proceedings of the kdd, F,1996, Vol. 96, No. 34, pp. 226-231.
[53] FINDIK F. Modulated (spinodal) alloys [J]. Periodicals of Engineering and Natural Sciences (PEN),2013, 1(1):47-55
[54] DATT C, THAMPI S P, GOVINDARAJAN R. Morphological evolution of domains in spinodal decomposition [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2015, 91(1): 010101.
[55] OSTWALD W. Studies on the formation and transformation of solid bodies [J]. Zeitschrift für Physikalische Chemie, 1897, 22: 289–330.
[56] KWIATKOWSKI DA SILVA A, PONGE D, PENG Z, et al. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys [J]. Nat Commun, 2018, 9(1): 1137.
[57] HOUBEN L, WEISSMAN H, WOLF S G, et al. A mechanism of ferritin crystallization revealed by Cryo-STEM tomography [J]. Nature, 2020, 579(7800): 540-543.
[58] LOH N D, SEN S, BOSMAN M, et al. Multistep nucleation of nanocrystals in aqueous solution [J]. Nat Chem, 2017, 9(1): 77-82.
[59] HATTA M, CIRILLO L A. Chromatin opening and stable perturbation of core histone:DNA contacts by FoxO1 [J]. J Biol Chem, 2007, 282(49): 35583-35593.