[1] WILLIAMS D B, CARTER C B. The transmission electron microscope[M]. Second ed. Boston: Springer, 2009.
[2] GONZALEZ-MARTINEZ I G, BACHMATIUK A, BEZUGLY, et al. Electron-beam induced synthesis of nanostructures: A review[J]. Nanoscale, 2016, 8(22): 11340-11362.
[3] KRASHENINNIKOV A V, BANHART F. Engineering of nanostructured carbon materials with electron or ion beams[J]. Nature Materials, 2007, 6(10): 723-733.
[4] KRASHENINNIKOV A V, NORDLUND K. Ion and electron irradiation-induced effects in nanostructured materials[J]. Journal of Applied Physics, 2010,107(7): 071301.
[5] HAN C, ISLAM M T, NI C. In situ TEM of electrochemical incidents: Effects of biasing and electron beam on electrochemistry[J]. ACS Omega, 2021,6(10): 6537-6546.
[6] ZHENG K, WANG C C, CHENG Y Q, et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica[J]. Nature Communications, 2010,1(3): 1-8.
[7] XU C, HAN W, XUE W, et al. An in-situ TEM characterization of electron beam induced dislocation motion in a single-crystalline gold thin film[J]. Materials Characterization, 2022,184: 111697.
[8] CHEN H, LI K, YANG M, et al. Effect of electron beam irradiation in TEM on the microstructure and composition of nanoprecipitates in Al-Mg-Si alloys[J]. Micron, 2019,116: 116-123.
[9] JINSCHEK J R. Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions[J]. Chemical Communications, 2014,50(21): 2696-2706.
[10] TANG M, YUAN W, OU Y, et al. Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: A review[J]. ACS Catalysis, 2020,10(24): 14419-14450.
[11] PU S, GONG C, ROBERTSON A W. Liquid cell transmission electron microscopy and its applications[J]. Royal Society Open Science, 2020,7(1): 191204.
[12] KOH A L, LEE S C, SINNCLAIR R, et al. Controlled atmosphere transmission electron microscopy-principles and practice[M]. Switzerland: Springer International Publishing, 2016.
[13] FANG K, YUAN W, WAGNER J B, et al. In-situ gas transmission electron microscopy. In:In-situ transmission electron Microscopy[M]. Singapore: Springer Nature Singapore,2023:251-325.
[14] ZHANG X F, KAMINO T. Imaging gas-solid interactions in an atomic resolution environmental TEM[J]. Microscopy Today, 2006,14(5): 16-19.
[15] SUZUKI M, YAGUCHI T, ZHANG X F. High-resolution environmental transmission electron microscopy: Modeling and experimental verification[J]. Microscopy Today, 2013,62(4): 437-450.
[16] JINSCHEK J R, HELVEG S. Image resolution and sensitivity in an environmental transmission electron microscope[J]. Micron, 2012,43(11): 1156-1168.
[17] 翁素婷, 张庆华, 谷林. 原位电子显微学方法在材料研究中的应用[J]. 电子显微学报, 2019,38(5): 556-567.
[18] 章效锋. 高分辨率原位环境透射电镜的发展与应用[J]. 电子显微学报,2010,29(3): 287-294.
[19] FAN Z, ZHANG L, BAUMANN D, et al.In situ transmission electron microscopy for energy materials and devices[J]. Advanced Materials, 2019,31(33): 1900608.
[20] KE F, W Y, JAKOB B, et al.In-situ gas transmission electron microscopy. In-situ transmission electron microscopy[M]. Singapore: Springer, 2023:251-325.
[21] ZHENG H, LIU Y, MAO S X, et al. Beam-assisted large elongation of in situ formed Li2O nanowires[J]. Scientific Reports, 2012,2(542): 1-4.
[22] XU S, TIAN M, WANG J, et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam[J]. Small, 2005,1(12): 1221-1229.
[23] CROZIER P A, KOUVETAKIS T J, RITTER C. Synthesis of uniform GaN quantum dot arrays via electron nanolithography of D2GaN3[J]. Applied Physics Letters, 2004,84(18): 3441–3443.
[24] MITSUISHI K S M, HAN M, et al. Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons[J]. Applied Physics Letters, 2003,83(10): 2064-2066.
[25] SACHAN R, et al. Sculpting nanoscale functional channels in complex oxides using energetic ions and electrons[J]. ACS Appl Mater Interfaces, 2018,10(19): 16731-16738.
[26] SU J, ZHU X. In situ TEM observation of preferential amorphization in single crystal Si nanowire[J]. Nanotechnology, 2018. 29(23): 235703.
[27] KOH A L, GIDCUMB E, ZHOU O, et al. Oxidation of carbon nanotubes in an ionizing environment[J]. Nano Letters, 2016,16(2): 856-863.
[28] WANG Y, LIU B, ZHAO X A, et al. Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2[J]. Nature Communications, 2018. 9(1): 4058.
[29] WANG Y, LI M, YANG Y, et al. In-situ surface transformation of magnesium to protect against oxidation at elevated temperatures[J]. Journal of Materials Science & Technology, 2020,44: 48-53.
[30] WANG Y C, LIU B Y, SHAN Z W. Design of the magnesium composite with high corrosion resistance and high deformability. Magnesium Technology 2020 [C]. San Diego: Springer International Publishing, 2020.
[31] YANG T, JIA P, LIU Q, et al. Air‐stable lithium spheres produced by electrochemical plating[J]. Angewandte Chemie, 2018,130(39): 12932-12935.
[32] ZHANG L, TANG Y, PENG Q, et al. Ceramic nanowelding[J]. Nature Communications, 2018,9(96): 20590.
[33] HE C, WANG H, FU L, et al. Principles for designing CO2 adsorption catalyst: Serving thermal conductivity as the determinant for reactivity[J]. Chinese Chemical Letters, 2022,33(2): 990-994.
[34] KOLLE J M, FAYAZ M, SAYARI A. Understanding the effect of water on CO2 adsorption[J]. Chemical Reviews, 2021,121(13): 7280-7345.
[35] S UN Y, GUO J, FERNANDEZ C, et al. In-situ atomic-scale oscillation sublimation of magnesium under CO2 condition[J]. Langmuir, 2018,35(1): 300-305.
[36] ISSHIKI M, IRIFUNE T, HIROSE K, et al. Stability of magnesite and its highpressure form in the lowermost mantle[J]. Nature, 2004,427(6969): 60-63.
[37] BEDWORTH R P. The oxidation of metals at high temperatures[J]. Journal of the Institute of Metals, 1923,29: 529–582.
[38] MITINA N A, LOTOV V A, SUKHUSHINA A V. Influence of heat treatment mode of various magnesia rocks on their properties[J]. Procedia Chemistry, 2015. 15: 213-218.
[39] CUI Y, LIEBER C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J]. Science, 2001,291: 851-853.
[40] WANG X, OUYANG Y, JIAO L, et al. Graphene nanoribbons with smooth edges behave as quantum wires[J]. Nature Nanotechnology, 2011,6(9): 563-567.
[41] LU Y, HUANG J Y, WANG C, et al. Cold welding of ultrathin gold nanowires[J]. Nature Nanotechnology, 2010,5(3): 218-24.
[42] QU K, ZHANG H, LAN Q, et al. Realization of the welding of individual TiO2 semiconductor nano-objects using a novel 1D Au80Sn20 nanosolder[J]. Journal of Materials Chemistry C, 2015,3(43): 11311-11317.
[43] AITKALIYEVA A, MADDEN J W, MILLER, B D, et al. Implementation of focused ion beam (FIB) system in characterization of nuclear fuels and materials[J]. Micron, 2014. 67: 65-73.
[44] HILMAS G E, FAHRENHOLTZ W G, WATTS J L, et al. Ceramic welds, and a method for producing the same[P]. US: US20120164411A1,2014.
[45] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014,7(2): 513-537.
[46] SEONG I W, HONG C H, KIM B K, et al. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode[J]. Journal of Power Sources, 2008,178(2): 769-773.
[47] JOHNSON H H. Hydrogen embrittlement[J]. Science, 1973. 179(4070): 228-230.
[48] ROGERS H C. Hydrogen embrittlement of metals: atomic hydrogen from a variety of sources reduces the ductility of many metals[J]. Science, 1968,159(3819): 1057-1064.
[49] 任学冲, 周庆军, 褚武扬, 等. 金属中氢鼓泡形核的机理[J]. 科学通报, 2007,52(6): 725-729.
[50] NATISHAN P M, MCCAFFERTY E. The mechanism of blister formation and rupture in the pitting of ion-implantated aluminum[J]. Journal of the Electrochemical Society, 1989,136(1): 53-58.
[51] SMIALEK J L. Moisture-induced TBC spallation on turbine blade samples[J]. Surface & Coatings Technology, 2011,206 (7): 1577-1585.
[52] SMIALEK J L. Moisture-induced delayed spallation and interfacial hydrogen embrittlement of alumina scales[J]. JOM, 2006,58(1): 29-35.
[53] 冯耀荣, 李鹤林. 石油管材的氢致裂纹与滞后断裂[J]. 石油机械, 1997,25(12):46-49.
[54] 解德刚. 氢对单晶铝界面失效及位错行为影响的原位研究[D]. 西安: 西安交通大学,2015.
[55] XIE D G, WANG Z J, SUN J, et al.In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface[J]. Nature Materials, 2015,14(9): 899-903.
[56] LI M, XIE D G, MA E, et al. Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures[J]. Nature Communications,2017,8(1): 1-7.
[57] BOND G M R I, ZEIDES F M, et al. Sub-threshold electron-irradiation damage in hydrogen-charged aluminum[J]. Philosophical Magazine A, 1987,55(5): 669-681.
[58] ISMER L, PARK M, JANOTTI A, et al. Interactions between hydrogen impurities and vacancies in Mg and Al: A comparative analysis based on density functional theory[J]. Physical Review B, 2009,80(18): 184110.
[59] LIU Y L, Z Y, ZHOU H B. Vacancy trapping mechanism for hydrogen bubble formation in metal[J]. Physical Review B, 2009,79(17): 172103.
[60] 李蒙. 透射电镜原位定量多场耦合加热系统的开发及其在铝高温氢损伤研究中的应用[D]. 西安: 西安交通大学,2017.
[61] EGERTON R F, M R, WANG F, et al. Basic questions related to electron-induced sputtering in the TEM[J]. Microscopy and Microanalysis, 2009, 15(S2), 1356-1357.
[62] JOHN J H, J I G, DAVID C J. Introduction to analytical electron microscopy[M]. New York: Springer Science & Business Media, 1979.
[63] JIANG N. Electron beam damage in oxides: A review[J]. Reports on Progress in Physics, 2015,79(1): 016501.
[64] GONZALEZ-MARTINEZ I G, B A, BEZUGLY V. Electron-beam induced synthesis of nanostructures: A review[J]. Nanoscale, 2016,8(22): 11340-11362.
[65] SMITH P T. The ionization of helium, neon, and argon by electron impact[J]. Physical Review, 1930,36(8): 1293-1302.
[66] FITE W L, BRACKMANN R T. Ionization of atomic oxygen on electron impact[J]. Physical Review, 1959,113(3): 815-816.
[67] FITE W L, BRACKMANN R T. Collisions of electrons with hydrogen atoms. I. Ionization[J]. Physical Review, 1958,112(4): 1141-1151.
[68] RAPP D, BRIGLIA D D. Total cross sections for ionization and attachment in gases by electron impact. II. Negative‐ion formation[J]. The Journal of Chemical Physics, 1965,43(5): 1480-1489.
[69] BHATT P, S R, YADAV N, et al. Partial-ionization cross sections of a CO2 molecule due to impact of 10–26-keV electrons[J]. Physical Review A, 2010,82(4): 044702-044702.
[70] KING S J, P S D. Electron ionization of CO2[J]. International Journal of Mass Spectrometry, 2008,272(2/3): 154-164.
[71] CHARLES J J. Quantum collision theory[M]. New York: North-Holland Publishing Company, 1975.
[72] LUDWIG R. Transmission electron microscopy[M]. Berlin: Springer, 1989.
[73] KAZUHIRO N, X Q T, TOMOKAZU Y, et al. Evidence of the hydrogen release mechanism in bulk MgH2[J]. Scientific Reports, 2015,5: 8450.
[74] WANG E L, SHEN Z J, YANG H J, et al. Dissociative ionization cross sections of CO2 at electron impact energy of 5 keV[J]. Chinese Physics B, 2014,23(11): 280-284.
[75] FREUND H J. Adsorption of gases on solid surfaces[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1995,99(11): 1261-1281.
[76] COAD J P, BISHOP H E, RIVIERE J C. Electron-beam assisted adsorption on the Si (111) surface[J]. Surface Science, 1970,21(2): 253-264.
[77] KIRBY R E, LICHTMAN D. Electron beam induced effects on gas adsorption utilizing auger electron spectroscopy: Co and O2 on Si: I. Adsorption studies[J]. Surface Science, 1974,41(2): 447-466.
[78] DUCHSTEIN L D, DAMSGAARD C D, HANSEN T W, et al. Low-pressure ETEM studies of Au assisted MgO nanorod growth[J]. Journal of Physics: Conference Series 2014,522(1): 012010.
[79] BURKE M G, BERTALI G, PRESTAT E, et al. The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600[J]. Ultramicroscopy, 2017,176: 46-51.
[80] ZOU L F, Y H, LIU Z Y, et al. Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries[J]. Nature Communications, 2020,11(1): 3204.
[81] SUGIMOTO S I, NISHII M, SUGIURA T. Radiation-induced chemical reactions of carbon monoxide and hydrogen mixture—I. Electron beam irradiation at atmospheric pressure[J]. Radiation Physics and Chemistry, 1984, 24(5/6): 567-580.
[82] BARAKET M, WALTON S G, WEI Z, et al. Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures[J]. Carbon, 2010, 48(12): 3382-3390.