[1] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153-1158.
[2] GLUDOVATZ B, HOHENWARTER A, THURSTON K V, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nature Communications, 2016, 7(1): 10602.
[3] POLETTI M G, FIORE G, GILI F, et al. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3+5at.% of C [J]. Materials & Design, 2017, 115: 247-254.
[4] LUO H, SOHN S S, LU W, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nature Communications, 2020, 11(1):3081.
[5] MUANGTONG P, RODCHANAROWAN A, CHAYSUWAN D, et al. The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution [J]. Corrosion Science, 2020, 172: 108740.
[6] LU C, NIU L, CHEN N, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nature Communications, 2016, 7:13564.
[7] GRANBERG F, NORDLUND K, ULLAH M W, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys [J]. Physical Review Letters, 2016, 116(13): 135504.
[8] TONG Y, CHEN D, HAN B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures [J]. Acta Materialia, 2019, 165: 228-40.
[9] KIM D G, JO Y H, YANG J, et al. Ultrastrong duplex high-entropy alloy with 2 GPa cryogenic strength enabled by an accelerated martensitic transformation [J]. Scripta Materialia, 2019, 171: 67-72.
[10] ZHANG Z, SHENG H, WANG Z, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nature Communications, 2017, 8:14390.
[11] DIAO H Y, FENG R, DAHMEN K A, et al. Fundamental deformation behavior in high-entropy alloys: An overview [J]. Current Opinion in Solid State and Materials Science, 2017, 21(5): 252-266.
[12] GAO M C, YEH J-W, LIAW P K, et al. High-entropy alloys [M]. Cham: Springer International Publishing, 2016:16.
[13] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448-511.
[14] YOSHIDA S, BHATTACHARJEE T, BAI Y, et al. Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing [J]. Scripta Materialia, 2017, 134: 33-36.
[15] LAPLANCHE G, KOSTKA A, REINHART C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Materialia, 2017, 128: 292-303.
[16] 熊婷, 郑士建, 马秀良. 高熵合金AlCoCrFeNi2.1的共晶组织及析出相研究[J].电子显微学报, 2020, 39(5):470-475.
[17] LAPLANCHE G, KOSTKA A, REINHART C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Materialia, 2017, 128: 292-303.
[18] OKAMOTO N L, FUJIMOTO S, KAMBARA Y, et al. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy [J]. Scientific Reports, 2016, 6(1): 35863.
[19] 符晓倩, 余倩, 张泽. TWIP高熵合金中塑性变形机理的原位电镜研究[J]. 电子显微学报, 2019, 38(5):452-458.
[20] 陈思静, 余倩. NiCoCr高熵合金中Cr含量对其变形行为影响的原位透射电镜研究[J].电子显微学报, 2020, 39(6):628-634.
[21] ZHANG F X, ZHAO S, JIN K, et al. Local structure and short-range order in a NiCoCr solid solution alloy [J]. Physical Review Letters, 2017, 118(20): 205501.
[22] DING J, YU Q, ASTA M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J]. Proceedings of the National Academy of Sciences, 2018, 115(36): 8919-8924.
[23] XU D, WANG M, LI T, et al. A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys [J]. Microstructures, 2022, 2(1): 2022001.
[24] JUAN C C, TSAI M H, TSAI C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Materials Letters, 2016, 184: 200-203.
[25] SATHIYAMOORTHI P, BASU J, KASHYAP S, et al. Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite [J]. Materials & Design, 2017, 134: 426-433.
[26] ZHAO Y L, YANG T, TONG Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy [J]. Acta Materialia, 2017, 138: 72-82.
[27] YUAN F, YAN D, SUN J, et al. Ductility by shear band delocalization in the nano-layer of gradient structure [J]. Materials Research Letters, 2019, 7(1): 12-17.
[28] ASHBY M. The deformation of plastically non-homogeneous materials [J]. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1970, 21(170): 399-424.
[29] GAO H, HUANG Y. Geometrically necessary dislocation and size-dependent plasticity [J]. Scripta Materialia, 2003, 48(2): 113-118.
[30] WU X, YANG M, YUAN F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14501-14505.
[31] LU K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345(6203): 1455-1456.
[32] LU K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nature Reviews Materials, 2016, 1(5): 16019.
[33] WU X, ZHU Y. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Materials Research Letters, 2017, 5(8): 527-532.
[34] ZHU Y, WU X. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Materials Research Letters, 2019, 7(10): 393-398.
[35] WU X, YANG M, JIANG P, et al. Deformation nanotwins suppress shear banding during impact test of CrCoNi medium-entropy alloy [J]. Scripta Materialia, 2020, 178: 452-456.
[36] MA E, ZHU T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals [J]. Materials Today, 2017, 20(6): 323-331.
[37] MA E, WU X. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy [J]. Nature Communications, 2019, 10(1): 5623.
[38] LEE H H, PARK H K, JUNG J, et al. Multi-layered gradient structure manufactured by single-roll angular-rolling and ultrasonic nanocrystalline surface modification [J]. Scripta Materialia, 2020, 186: 52-56.
[39] WU X, YUAN F, YANG M, et al. Nanodomained nickel unite nanocrystal strength with coarse-grain ductility [J]. Scientific Reports, 2015, 5(1): 11728.
[40] GUO W, PEI Z, SANG X, et al. Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability [J]. Acta Materialia, 2019, 170: 176-186.
[41] MA Y, YUAN F, YANG M, et al. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures [J]. Acta Materialia, 2018, 148: 407-418.
[42] WANG X, LI Y, ZHANG Q, et al. Gradient structured copper by rotationally accelerated shot peening [J]. Journal of Materials Science & Technology, 2017, 33(7): 758-761.
[43] DING L, HILHORST A, IDRISSI H, et al. Potential TRIP/TWIP coupled effects in equiatomic CrCoNi medium-entropy alloy [J]. Acta Materialia, 2022, 234: 118049.
[44] HE J, MAKINENI S K, LU W, et al. On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy [J]. Scripta Materialia, 2020, 175: 1-6.
[45] YASNIKOV I S, VINOGRADOV A, ESTRIN Y. Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals [J]. Scripta Materialia, 2014, 76: 37-40.
[46] 胡赓祥,蔡珣,戎咏华. 材料科学基础(第三版)[M]. 上海:上海交通大学出版社, 2010年.
[47] YANG M, PAN Y, YUAN F, et al. Back stress strengthening and strain hardening in gradient structure [J]. Materials Research Letters, 2016, 4(3): 145-151.
[48] FANG X, XUE Q, YU K, et al. Superior strength-ductility synergy by hetero-structuring high manganese steel [J]. Materials Research Letters, 2020, 8(11): 417-423.