功能材料电子轨道的定量会聚束电子衍射研究进展
王诗雨,林 挺,尚彤彤,张庆华,谷 林*
(1. 中国科学院物理研究所,北京100190;2. 清华大学,材料科学与工程学院,北京100084)
摘 要 功能材料以其独特的性能和广阔的应用前景,成为凝聚态物理和材料科学领域的重要研究热点之一。但与功能材料功能性起源相关的晶格、电荷、轨道和自旋四个基本自由度中,对轨道的表征手段较为有限。本文对近年发展的定量会聚束电子衍射(QCBED)表征轨道自由度的原理进行了深入讨论。此外,本文还介绍了利用QCBED在轨道自由度层面研究功能材料起源方面取得的最新进展,并对该方法的未来发展方向进行了简单展望。
关键词 定量会聚束电子衍射;轨道自由度;功能材料
中图分类号:O469;O73;O48 文献标识码:A doi:10.3969/j.issn.1000-6281.2023.06.009
Recent progress in the orbital freedom characterization of functional materials by QCBED
WANG Shi-yu1, LIN Ting1, SHANG Tong-tong2, ZHANG Qing-hua1, GU Lin2*
(1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190; 2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China)
Abstract With a variety of exotic properties and the corresponding potential applications, functional materials have been one of the major research areas in condensed matter physics and materials science. However, the characterization of the orbital is limited among the four basic degrees of freedom: lattice, charge, orbital and spin, which are related to the origin of functionality. In this review, we discuss in detail the principle of directly imaging the orbital by newly developed quantitative convergent-beam electron diffraction (QCBED). We also present recent progress in the study of the origin of functional materials from the level of orbital freedom by QCBED. In addition, we give a brief outlook on the future development of this method.
Keywords QCBED; orbital freedom; functional materials
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84–87.
[2] BOESCKE T, MULLER J, BRAUHAUS D, et al. Ferroelectricity in hafnium oxide thin films[J]. Applied Physics Letters, 2011, 99(10): 102903.
[3] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-+.
[4] XIAO D, GU L. Origin of functionality for functional materials at atomic scale[J]. Nano Select, 2020,1(2): 183-199.
[5] 郭谊忠,李帅,王占鑫,等. 单晶Pt中位错与非共格孪晶界反应的原位原子尺度观察[J]. 电子显微学报, 2022, 41(4): 363–369.
[6] 韦如建, 贺昕, 王兴权, 等. 纳米Ir薄膜中缺陷结构的原子尺度研究[J]. 电子显微学报, 2021, 40(2): 101–107.
[7] ZHENG J, ZHU Y, WU L, et al. On the sensitivity of electron and X-ray scattering factors to valence charge distributions[J]. Journal Of Applied Crystallography, 2005, 38: 648–656.
[8] LIPPMANN T, BLAHA P, ANDERSEN N, et al. Charge-density analysis of YBa2Cu3O6.98. Comparison of theoretical and experimental results[J]. Acta Crystallographica Section A, 2003, 59: 437–451.
[9] MUELLER-CASPARY K, DUCHAMP M, ROESNER M, et al. Atomic-scale quantification of charge densities in two-dimensional materials[J]. Physical Review B, 2018,98(12): 121408.
[10] ZHANG J, HE Q, TRASSIN M, et al. Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3[J]. Physical Review Letters, 2011, 107(14): 147602.
[11] KENNEDY E, SARI B, SCOTT M C. Chemical and structural alterations in the amorphous structure of obsidian due to nanolites[J]. Microscopy and Microanalysis, Cambridge University Press, 2022, 28(2): 289–295.
[12] GAO C, GENONI A, GAO S, et al. Observation of the asphericity of 4f-electron density and its relation to the magnetic anisotropy axis in single-molecule magnets[J]. Nature Chemistry, 2020, 12(2): 213-+.
[13] Kamimura H, Ushio H. On the interplay of Jahn-Teller physics and Mott physics in cuprates[J]. INTERNATIONAL SYMPOSIUM ON LATTICE EFFECTS IN CUPRATE HIGH TEMPERATURE SUPERCONDUCTORS (LEHTSC2007). 2008, 108: 012030.
[14] SOLOVYEV I, HAMADA N, TERAKURA K. Crucial role of the lattice distortion in the magnetism of LaMnO3[J]. Physical Review Letters, 1996, 76(25): 4825–4828.
[15] COPPENS P, VOLKOV A. The interplay between experiment and theory in charge-density analysis[J]. Acta Crystallographica A-Foundation And Advances, 2004, 60: 357–364.
[16] BRUNETTI G, ROBERT D, BAYLE-GUILLEMAUD P, et al. Confirmation of the domino-cascade model by LiFePO4/FePO4 precession electron diffraction[J]. Chemistry Of Materials, 2011, 23(20): 4515–4524.
[17] ZUO J. Quantitative convergent beam electron diffraction[J]. Materials Transactions Jim, 1998, 39(9): 938–946.
[18] van SMAALEN S, NETZEL J. The maximum entropy method in accurate charge-density studies[J]. Physica Scripta, 2009, 79(4): 048304.
[19] FENG F, ZHU J, ZHANG A. Refinement of the crystal structural parameters of La2/3Ca1/3MnO3 using quantitative convergent-beam electron diffraction[J]. Acta Crystallographica A-Foundation And Advances, 2005, 61: 453–459.
[20] NAKASHIMA P. Increasing the precision of quantitative CBED structure factor measurements[J]. Acta Crystallographica A-Foundation And Advances, 2005, 61: C457–C457.
[21] NAKASHIMA P N H, MUDDLE B C. Differential quantitative analysis of background structure in energy-filtered convergent-beam electron diffraction patterns[J]. Journal Of Applied Crystallography, 2010, 43: 280–284.
[22] ARYAL B, MORIKAWA D, TSUDA K, et al. Improvement of precision in refinements of structure factors using convergent-beam electron diffraction patterns taken at Bragg-excited conditions[J]. Acta Crystallographica A-Foundation And Advances, 2021, 77: 289–295.
[23] NAKASHIMA P. Thickness difference: A new filtering tool for quantitative electron diffraction[J]. Physical Review Letters, 2007, 99(12): 125506.
[24] HOLLADAY A, LEUNG P, COPPENS P. Generalized relations between d-orbital occupancies of transition-metal atoms and electron-density multipole population parameters from x-ray-diffraction data[J]. Acta Crystallographica Section A, 1983, 39(MAY): 377–387.
[25] PENG D, NAKASHIMA P N H. Measuring density functional parameters from electron diffraction patterns[J]. Physical Review Letters, 2021, 126(17): 176402.
[26] SHANG T, XIAO D, MENG F, et al. Real-space measurement of orbital electron populations for Li1-xCoO2[J]. Nature Communications, 2022,13(1): 6248.
[27] TANG Z, SHANG T, XU H, et al. An anomalous electron configuration among 3d transition metal atoms[J]. Angewandte Chemie-International Edition, 2023, 62: e202216898.
[28] KASAI H, TOLBORG K, SIST M, et al. X-ray electron density investigation of chemical bonding in van der Waals materials[J]. Nature Materials, 2018, 17(3): 249-+.
[29] GAO W, ADDIEGO C, WANG H, et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy[J]. Nature, 2019, 575(7783): 480–484.
[30] FANG S, WEN Y, ALLEN C S, et al. Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy[J]. Nature Communications, 2019, 10(1): 1127.