[1] WONG S K. G protein selectivity is regulated by multiple intracellular regions of GPCRs [J]. Neurosignals,2003, 12(1):1-12.
[2] ALI D C, NAVEED M, GORDON A, et al. β-Adrenergic receptor, an essential target in cardiovascular diseases [J]. Heart Fail Rev, 2020,25(2):343-354.
[3] QUINONES M, FERNO J, DIEGUEZ C, et al. Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives [J]. Expert Opin Drug Discov, 2019, 14(5):421-431.
[4] PARK J, LANGMEAD C J, RIDDY D M. New advances in targeting the resolution of inflammation: implications for specialized Pro-resolving mediator GPCR drug discovery [J]. ACS Pharmacol Transl Sci,2020, 3(1):88-106.
[5] CHAUDHARY P K, KIM S. An insight into GPCR and G-proteins as cancer drivers[J]. Cells, 2021, 10(12):3288.
[6] HOLLENSTEIN K, DE GRAAF C, BORTOLATO A, et al. Insights into the structure of class B GPCRs [J]. Trends Pharmacol Sci, 2014, 35(1):12-22.
[7] KUDALKAR E M, DAVIS T N, ASBURY C L. Single-molecule total internal reflection fluorescence microscopy [J]. Cold Spring Harb Protoc, 2016, 2016(5):1-6.
[8] DENG S, CHEN J, HUANG Q, et al. Saturated Förster resonance energy transfer microscopy with a stimulated emission depletion beam: a pathway toward single-molecule resolution in far-field bioimaging [J]. Opt Lett, 2010, 35(23):3862-3864.
[9] XIA Y, FU B M. Investigation of endothelial surface Glycocalyx components and ultrastructure by single molecule localization microscopy: stochastic optical reconstruction microscopy (STORM) [J]. Yale J Biol Med, 2018, 91(3):257-266.
[10] POULTER N S, KHAN A O, PALLINI C, et al. Single-molecule localization and structured illumination microscopy of platelet proteins[J]. Methods Mol Biol, 2018, 1812:33-54.
[11] FISH K N. Total internal reflection fluorescence (TIRF) microscopy[J]. Curr Protoc, 2022, 2(8):e517.
[12] AMBROSE E J, JONES P C. Surface-contact microscopy. Studies in cell movements.Med Biol Illus. 1961, 11:104-10.
[13] HIRSCHFELD T. Modifications in photomultipliers with total internal reflection enhanced sensitivity [J]. Appl Opt, 1966, 5(8):1337-1338.
[14] AXELROD D, THOMPSON NL, BURGHARDT T P. Total internal inflection fluorescent microscopy [J]. J Microsc, 1983, 129:19-28.
[15] FUNATSU T, HARADA Y, TOKUNAGA M, et al. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution[J]. Nature, 1995, 374(6522):555-559.
[16] TOOMRE D. Cellular imaging using total internal reflection fluorescence microscopy: theory and instrumentation [J]. Cold Spring Harb Protoc, 2012, 2012(4):414-424.
[17] MILLIS B A. Evanescent-wave field imaging: an introduction to total internal reflection fluorescence microscopy [J]. Methods Mol Biol, 2012, 823:295-309.
[18] FINKENSTAEDT-QUINN S A, QIU TA, SHIN K, et al. Super-resolution imaging for monitoring cytoskeleton dynamics [J]. Analyst, 2016, 141(20):5674-5688.
[19] SAFFARIAN S. Application of advanced light microscopy to the study of HIV and its interactions with the host [J]. Viruses, 2021, 13(2):223.
[20] MCDONALD K L. Electron microscopy and EM immunocytochemistry [J]. Methods Cell Biol, 1994, 44:411-444.
[21] LAMICHHANE R, LIU J J, PAUSZEK R F, et al. Fluorophore labeling, nanodisc reconstitution and single-molecule observation of a G protein-coupled receptor [J]. Bio Protoc, 2017, 7(12):e2332.
[22] HERN J A, BAIG A H, MASHANOV G I, et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules [J]. Proc Natl Acad Sci U S A, 2010, 107(6):2693-2698.
[23] LEE W, PARPURA V. Spatio-temporal characteristics of metabotropic glutamate receptor 5 traffic at or near the plasma membrane in astrocytes [J]. Glia, 2016, 64(6):1050-1065.
[24] CALEBIRO D, RIEKEN F, WAGNER J, et al. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization [J]. Proc Natl Acad Sci U S A, 2013, 110(2):743-748.
[25] WEI S, THAKUR N, RAY A P, et al. Slow conformational dynamics of the human A2A adenosine receptor are temporally ordered [J]. Structure, 2022, 30(3):329-337.e5.
[26] KASAI R S, SUZUKI K G, PROAANITZ E R, et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging [J]. J Cell Biol, 2011, 192(3):463-480.
[27] TABOR A, MOLLER D, HUBNER H, et al. Visualization of ligand-induced dopamine D2S and D2L receptor internalization by TIRF microscopy[J]. Sci Rep, 2017, 7(1):10894.
[28] CAI X, BAI B, ZHANG R, et al. Apelin receptor homodimer-oligomers revealed by single-molecule imaging and novel G protein-dependent signaling[J]. Sci Rep, 2017, 17:40335.
[29] YUDOWSKI G A, ZASTROW M. Investigating G protein-coupled receptor endocytosis and trafficking by TIR-FM [J]. Methods Mol Biol, 2011, 756:325-332.
[30] ROMAN-VENDRELL C, YUDOWSKI G A. Real-time imaging of mu opioid receptors by total internal reflection fluorescence microscopy[J]. Methods Mol Biol, 2015, 1230:79-86
[31] BOWMAN S L, SOOHOO A L, PUTHENVEEDU M A. Visualizing and quantitating sequence- dependent GPCR recycling [J]. Methods Cell Biol, 2015, 130:333-345.
[32] CHEN Y C, CHANG Y C, CHANG HA, et al. Differential Ca2+ mobilization and mast cell degranulation by FcεRI- and GPCR-mediated signaling [J]. Cell Calcium, 2017, 67:31-39.
[33] BOYER S B, CLANCY S M, TERUNUMA M, et al. Direct interaction of GABAB receptors with M2 muscarinic receptors enhances muscarinic signaling. J Neurosci [J]. 2009, 29(50):15796-15809.
[34] VIZCAY-BARRENA G, WEBB S E, MARTIN-FERNANDEZ M L,et al. Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM) [J]. J Exp Bot, 2011, 62(15):5419-5428.
[35] JOHNSON A, VERT G. Single event resolution of plant plasma membrane protein endocytosis by TIRF microscopy [J]. Front Plant Sci, 2017, 24(8):612.
[36] SASSMANN S, RODRIGUES C, MILME S W, et al. An immune-responsive cytoskeletal-plasma membrane feedback loop in plants [J]. Curr Biol, 2018, 28(13):2136-2144.
[37] KONOPKA C A, BEDNAREK S Y. Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex [J]. Plant J, 2008, 53(1):186-196.
[38] WAN Y, ASH W M, FAN L, et al. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana [J]. Plant Methods, 2011, 24(7):27.
[39] CUI Y, ZHANG X, LI X, et al. Multiscale microscopy to decipher plant cell structure and dynamics [J]. New Phytol, 2023, 237(6):1980-1997.