真空调频原子力显微镜高精度扫描器设计与校准
温 阳,陈纵横,王 博,冯 婕,舒鹏丽,郭 强,温焕飞,唐 军,菅原康弘,马宗敏*,刘 俊
(1.动态测试技术国家重点实验室, 山西 太原 030051;2.中北大学仪器与电子学院, 山西 太原030051;3.山西省重点实验室, 山西 太原030051;4.大阪大学, 日本 大阪府565-0871 )
摘 要 原子力显微镜(AFM)是一种表征样品表面的物理化学信息的精密仪器,AFM高精度扫描器是整个测量与表征系统的核心部件,其性能直接影响整个测量系统的性能,因此对原子力显微镜高精度扫描器的研究具有重要意义。本文介绍了调频原子力显微镜(FM-AFM)、AFM精密扫描平台以及扫描器的基本原理,提出了更为精确的扫描器设计模型,并将根据真空FM-AFM实际需要设计的扫描器搭载到自主研发的超高真空AFM系统中进行测试,结果表明了设计模型的精确性。随后,根据实验测试结果进行了相应的校准,提出了一种基于图像进行非线性校准的简易方法。最后,对云母样品表面形貌进行了测量,得到了云母台阶。
关键词 调频原子力显微镜;AFM精密扫描平台;压电扫描器;滞后效应;非线性校准
中图分类号:TH742;TH73 文献标识码:A doi:10.3969/j.issn.1000-6281.2023.03.006
Design and calibration of high precision scanner for vacuum FM atomic force microscope
WEN Yang1,2,3,CHEN Zong-heng1,2,3,WANG Bo1,2,3,FENG Jie1,2,3,SHU Peng-li1,2,3,
GUO Qiang1,2,3,WEN Huan-fei1,2,3,TANG Jun1,2,3,Sugawara Y4,MA Zong-min1,2,3*,LIU Jun1,2,3
(1.State Key Laboratory of Dynamic Testing Technology,North University of China,Taiyuan Shanxi 030051,China;2. School of Instrument and Electronics,North University of China, Taiyuan Shanxi 030051,China;3.Shanxi Provincial Key Laboratory,North University of China,Taiyuan Shanxi 030051, China;4.Osaka University,Osaka Japan 565-0871,Japan)
Abstract Atomic force microscope (AFM) is a precise instrument for obtaining the physical and chemical information of a sample surface. The high-precision scanner of AFM is the core component, which directly affects the performance of the entire system. Therefore, the research on the high-precision scanner of atomic force microscope is of great importance. The basic principle is introduced for frequency modulated atomic force microscope (FM-AFM), AFM precision scanning platform and scanner. A more accurate scanner design model is proposed. The scanner designed according to the actual needs of vacuum FM-AFM is carried into the self-developed ultra-high vacuum AFM system for testing. The results show that the design model is accurate. According to experimental results, a simple nonlinear calibration method based on image is proposed. Finally, the surface morphology of the mica sample is measured, and the mica steps are obtained.
Keywords frequency modulated atomic force microscope;AFM precision scanning platform;piezoelectric scanner;lagging effect;nonlinear calibration
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] ARIMA E, WEN H, NAITOH Y, et al. KPFM/AFM imaging on TiO2(110) surface in O2 gas[J]. Nanotechnology, 2018,29(10):105504.
[2] 单齐冀,韩瑶,张莹,等. 基于原子力显微镜的压痕模式和双模纳米力学模式在模量表征中的影响因素[J]. 电子显微学报,2022,41(2):154-160.
[3] WU S, FU X, HU X D, et al. Manipulation and behavior modeling of one-dimensional nanomaterials on a structured surface[J]. Applied Surface Science, 2010, 256(14):4738-4744.
[4] 许军,金晨,牛刘敏,等. 低噪声原子力显微镜测量单元设计[J]. 电子显微学报,2021, 40(2):138-143.
[5] TABATA O, LI M, LIU L, et al. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy, biochemical and biophysical research communications[J]. Biochemical and Biophysical Research Communications, 2011, 404(2):689-694.
[6] LIAO H S, JUANG B J, CHANG W C, et al. Rotational positioning system adapted to atomic force microscope for measuring anisotropic surface properties[J]. Review of Scientific Instruments, 2011, 82(11):929-275.
[7] 邹文栋, 魏永强, 纪海燕. 基于Fuzzy-PID的PZT微纳扫描控制算法[J]. 仪器仪表学报, 2009, 6 (5):932-937.
[8] MEYER C, SQALLI O, LORENZ H, et al. Slip-stick step-scanner for scanning probe microscopy[J]. Review of Scientific Instruments,2005,76(6):3706(1-5).
[9] DONG J, MUKHOPADHYAY D, FERREIRA P M. Design, fabrication and testing of a silicon-on-insulator (SOI) MEMS parallel kinematics XY stage[J]. Journal of Micromechanics and Microengineering, 2007, 17(6):1154.
[10] HWU E T, NAZARETSKI E, CHU Y S, et al. Design and characterization of a compact nano-positioning system for a portable transmission x-ray microscope[J]. Review of Scientific Instruments, 2013, 84(12):123702.
[11] GROSCURTH P , ZIEGLER U. Atomic force microscopy[M]. Oxford University Press,2010.
[12] ZHONG Q, INNISS D, KJOLLER K, et al. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy[J]. Surface Sci,1993,290: L688-692.
[13] 曲章. NC-AFM探针振动微弱信号检测系统及技术研究[D]. 太原:中北大学, 2018.
[14] 常诞, 马宗敏, 魏久焱, 等. 原子力显微镜高精度微动扫描平台的设计[J]. 微纳电子技术, 2020, 57(11):911-917.
[15] CHEN C J. In situ testing and calibration of tube piezoelectric scanners[J]. Ultramicroscopy, 1992, 42(Part2):1653-1658.
[16] 田松鹏. 基于Q-plus技术扫描探针显微镜扫描头的研制[D]. 武汉:华中科技大学, 2013.
[17] 孙鑫, 严大勤, 费敏锐,等. 单管压电扫描器建模方法的研究及标定精度分析[J]. 仪表技术, 2007, 7:51-53.
[18] OHKUBO M, KUROSAWA K, SONOUCHI R. Introduction to scanning tunneling microscopy[M]. Oxford University Press, 2008.
[19] LEANG K, ZOU Q, DEVASIA S. Feedforward control of piezoactuators in atomic force microscope systems[J]. Control Systems IEEE, 2009, 29(1):70-82.
[20] SALAPAKA S, SEBASTIAN A, CLEVELAND J P, et al. High bandwidth nano-positioner: A robust control approach[J]. Review of Scientific Instruments, 2002, 73(9):3232-3241.
[21] ABRAMOVITCH D Y, ANDERSSON S B, PAO L Y, et al. A tutorial on the mechanisms, dynamics, and control of atomic force microscopes[C]// American Control Conference,IEEE, 2007.
[22] HUES S M, DRAPER C F, LEE K P, et al. Effect of PZT and PMN actuator hysteresis and creep on nanoindentation measurements using force microscopy[J]. Review of Scientific Instruments, 1994, 65(5):1561-1565.
[23] CROFT D, SHED G, DEVASIA S. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application[J]. Journal of Dynamic Systems Measurement & Control,2001,123(1):35-43.
[24] JILES D C, ATHERTON D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1984, 55(6):2115.
[25] 董维杰, 宋志杨, 崔岩. 压电陶瓷管的微位移测量与非线性校正[J]. 光学精密工程,2009,17(9):2212-2217.
[26] DUERSELEN R, GRUNEWALD U, PREUSS W. Calibration and applications of a high-precision piezo scanner for nanometrology[J]. Scanning, 1995, 17(2):91-96.