灵武长枣果实阿拉伯半乳糖蛋白免疫荧光定位
王 静, 章英才*, 陶珊珊
(宁夏大学生命科学学院,宁夏银川750021)
摘 要 目的:为探讨灵武长枣果实AGPs糖蛋白在果实发育过程中的分布特征和动态变化规律。方法:以4个时期灵武长枣果实为实验材料,通过免疫组织化学方法,研究了不同发育时期果实阿拉伯半乳糖蛋白AGPS的分布,为进一步研究灵武长枣果实AGPs在品质调控方面的功能奠定基础。结果:(1)JIM13和JIM8抗体所识别的抗原在4个时期果实的外果皮及相邻的内部数层排列紧密的中果皮小细胞细胞壁和细胞内部均有分布。(2)除了空腔之外,内部的中果皮大型卵圆形薄壁细胞的细胞壁和细胞内在膨大前期均有JIM13和JIM8抗体所识别的抗原分布,而快速膨大期、着色期和完熟期果实JIM13和JIM8抗体所识别的抗原均主要分布于细胞壁上,大部分细胞内部无分布;随着果实发育成熟,空腔数量增多,中果皮薄壁细胞间隙拉大排列更加松散,出现细胞破裂,JIM13和JIM8抗体所识别的抗原分布逐渐减少。(3)4个时期果实维管束中维管束鞘、木质部、韧皮部、形成层所有细胞的细胞壁和细胞内部都分布有JIM13和JIM8抗体所识别的抗原,维管束数量和大小随果实发育及体积的进一步增大逐渐减少,JIM13和JIM8抗体所识别的抗原分布逐渐减少。结论:JIM13和JIM8为灵武长枣果实免疫组织化学的良好抗体,各时期果实的不同组织JIM13和JIM8抗体所识别的抗原荧光强弱存在一定的差异;AGPs参与了灵武长枣果实维管束发育过程的形态建成、细胞的分裂和体积的增大,为果实发育提供营养支持及保护。
关键词 灵武长枣;果实;阿拉伯半乳糖蛋白;免疫荧光定位
中图分类号:Q942.6;Q944.62;Q513;S665.1 文献标识码:Adoi:10.3969/j.issn.1000-6281.2022.03.011
Immunofluorescence localization of arabinogalactan proteins inZiziphus jujuba Mill cv. Lingwuchangzao fruit
WANG Jing,ZHANG Ying-cai*,TAO Shan-shan
(School of Life Science,Ningxia University,Yinchuan Ningxia 750021,China)
Abstract Objective:To uncover the distribution characteristics and dynamic changes of AGPs in Ziziphus jujuba Mill cv. Lingwuchangzao fruit during fruit development.Methods:The distribution of arabinogalactan proteins AGPS was studied by immunohistochemistry in four periods ofZiziphus jujuba Mill cv. Lingwuchangzao fruit, laying the foundation for further research on the functions of AGPs in quality regulation of Ziziphus jujuba Mill cv. Lingwuchangzao fruit. Results: (1) The antigens recognized by JIM13 and JIM8 antibodies were distributed in the cell walls and cell interiors of the epicarp and the alongside internal layers of the closely-arranged mesocarp small cells in four periods fruit. (2) Except for the cavities, the antigens recognized by JIM13 and JIM8 antibodies were distributed in the cell walls and the inner part of the large ovoid parenchyma cells in the inner mesocarp during the early bulking period, while the antigens recognized by JIM13 and JIM8 antibodies were mainly distributed in the cell walls during the rapid enlargement period, coloring period and maturation periods, with no antigens distribution in the inner part of most cells. As the fruit developed and matured the number of cavities increased, the mesocarp parenchyma cells became more loosely arranged with elongated intercellular spaces. Cell rupture occurred, and the distribution of antigens recognized by JIM13 and JIM8 antibodies gradually decreased. (3) The antigens recognized by JIM13 and JIM8 antibodies were distributed in the cell walls and cell interiors of all cells in the vascular bundle sheaths, xylem, phloem, and cambium of vascular bundles in four periods fruit, and the number and size of vascular bundles gradually decreased with fruit development. Further increase in size, and the distribution of antigens recognized by JIM13 and JIM8 antibodies gradually decreased. Conclusion:JIM13 and JIM8 are good antibodies for immunohistochemistry in Ziziphus jujuba Mill cv. Lingwuchangzao fruit, and there are some differences in the fluorescence intensity of antigens recognized by JIM13 and JIM8 antibodies in different tissues of fruit at different periods, AGPs participate in morphogenesis, cell division and volume increase during vascular bundles development of Ziziphus jujuba Mill cv. Lingwuchangzao fruit, which provides nutritional support and protection for fruit development.
Keywords Ziziphus jujuba Mill cv. Lingwuchangzao;fruit;arabinogalactan proteins;immunofluorescence localization
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] 李田,张卿,曹庆芹,等. EGTA 对‘秦冠’苹果花粉管壁主要成分的影响[J]. 电子显微学报,2020,39(2):181-188.
[2] 杜琳. 富含羟脯氨酸糖蛋白(HRGPs)在冬瓜-枯萎病菌互作中的诱导调控及亚细胞定位分析[D]. 南昌:江西农业大学,2013.
[3] 包晗,郑国琦. 阿拉伯半乳糖蛋白在高等植物中的分布及功能[J]. 北方园艺,2016(1):185-191.
[4] MAKAROVA E N,SHAKHMATOV E G,BELYY V A. Structural studies of water-extractable pectic polysaccharides and arabinogalactan proteins from Picea abies greenery [J]. Carbohydrate Polymers,2018,195:207-217.
[5] 马浩力,余礼,梁荣洪,等. 高等植物阿拉伯半乳糖蛋白的功能研究[J]. 中国科学: 生命科学,2015,45(2):113-123.
[6] LESZCZUK A,SZCZUKA E.Arabinogalactan proteins: Immunolocalization in the developing ovary of a facultative apomict Fragaria x ananassa (Duch.) [J]. Plant Physiology and Biochemistry,2018,123:24-33.
[7] 秦源,陈丹,赵洁.烟草柱头和花柱中阿拉伯半乳糖蛋白的定位[J].植物生理与分子生物学学报,2006, 32 (3): 307 -314.
[8] SHAKHMATOV E G,ATUKMAEV K V,MAKAROVA E N. Structural characteristics of pectic polysaccharides and arabinogalactan proteins from Heracleum sosnowskyi Manden[J]. Carbohydrate Polymers,2016,136: 1358-1369.
[9] LESZCZUK A,SZCZUKA E,ZDUNEK A. Arabinogalactan proteins: Distribution during the development of male and female gametophytes[J]. Plant Physiology and Biochemistry, 2019, 135:9-18.
[10] CANNESAN M A,DURAND C,BUREL C,et al. Effect of arabinogalactan proteins from the root caps of Pisum sativum and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination[J]. Plant Physiology, 2012,159(4):1658-1670.
[11] JIA Q S,ZHU J,XU X F,et al. Arabidopsis AT-hook protein TEK positively regulates the expression of arabinogalactan proteins for Nexine formation[J]. Molecular Plant, 2015, 8(2): 251-260.
[12] LESZCZUK A,CHYLIŃSKA M,ZIĘBA E,et al. Structural network of arabinogalactan proteins (AGPs) and pectins in apple fruit during ripening and senescence processes[J]. Plant Science,2018, 275:36-48.
[13] REDGWELL R J, CURTI D, WANG J K, et al. Cell wall polysaccharides of Chinese Wolfberry(Lycium barbarum):Part 2. Characterisation of arabinogalactan-proteins [J]. Carbohydrate Polymers, 2011, 84(3):1075-1083.
[14]BAO H, ZHENG G Q, QI G L, et al. Cellular localization and levels of arabinogalactan proteins in Lycium barbarum’s fruits[J]. Pak J Bot, 2016,48(5): 1951-1963.
[15] 田庚元. 枸杞子糖缀合物的结构与生物活性研究[J]. 世界科学技术-中医药现代化,2003,5(4):22-30.
[16] 秦小明,宁恩创,林华娟.枸杞子阿拉伯半乳糖聚糖糖蛋白的微细构造研究(Ⅰ)[J].食品科学,2003,24(7):34-40.
[17] QIN X M,YAMAUCHI R,AIZAWA K,et al. Structural features of arabinogalactan–proteins from the fruit of Lycium chinense Mill [J]. Carbohydrate Research,2001,333(1):79-85.
[18] 刘晓连,李亚蕾,罗瑞明,等. 灵武长枣水提多糖结构特征及理化性质[J]. 食品科学,2013, 34(15):120-125.
[19] 章英才,柴雅红,曹金霞. 灵武长枣果实多糖中单糖组成分析[J]. 干旱地区农业研究,2018,36(2):144-152.
[20] TRIFUNOVIĆ M, TADIĆ V, PETRIĆ M, et al. Quantification of arabinogalactan proteins during in vitro morphogenesis induced by β-D-glucosyl Yariv reagent in Centaurium erythraea root culture[J]. Acta Physiol Plant,2014,36 (5):1187-1195.
[21] SUTHERLAND P W,HALLETT I C, MACRAE E, et al. Cytochemistry and immunolocalisation of polysaccharides and proteoglycans in the endosperm of green Arabica coffee beans[J]. Protoplasma, 2004, 223(2/3/4): 203-211.
[22] BOSCH M, KNUDSEN J S,DERKSEN J, et al. Class III pistil-specific extension-like proteins from tobacco have characteristics of arabinogalactan proteins[J]. Plant Physiol, 2001,125(4):2180-2188.
[23] GUAN Y, NOTHNAGEL EA. Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures[J]. Plant Physiol,2004,135(3):1346-1366.
[24] LESZCZUK A,SZCZUKA E,WYDRYCH J,et al. Changes in arabinogalactan proteins (AGPs) distribution in apple ( Malus x domestica ) fruit during senescence[J].Postharvest Biology and Technology,2018,138:99-106.
[25] QIN Y, CHEN D, ZHAO J. Localization of arabinogalactan proteins in anther, pollen, and pollen tube of Nicotiana tabacum L[J]. Protoplasma, 2007, 231 (1/2): 43-53.
[26] RAFIŃSKA K, BEDNARSKA E.Localisation pattern of homogalacturonan and arabinogalactan proteins in developing ovules of the gymnosperm plant Larix decidua Mill[J].Sexual Plant Reproduction, 2011, 24 (1):75-87.
[27] 任玉锋,姜牧炎,马文平,等. 灵武长枣采后低温贮藏期间细胞壁组分的变化[J]. 北方园艺,2018(18):114-117.
[28] 王莹莹. 香蕉(Musaspp.)阿拉伯聚半乳糖蛋白对低温胁迫的响应[D]. 广州:华南农业大学,2016.
[29] 林曼娜. 荧光显微镜的成像原理及其在生物医学中的应用[J]. 电子显微学报,2021, 40(1):90-93.
[30] CHAPMAN A,BLERVACQ A S,VASSEUR J,et al. Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of β-glucosyl Yariv reagent and epitope localisation during embryo development[J]. Planta,2000,211(3):305-314.
[31] LESZCZUK A, SZCZUKA E, LEWTAK K, et al.Effect of low temperature on changes in AGP Distribution during development of Bellis perennis Ovules and Anthers[J]. Cells, 2021, 10: 1880-1894.
[32] COIMBRA S, ALMEIDA J, JUNQUEIRA V, et al. Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction[J]. Journal of Experimental Botany,2007,58: 4027-4035.
[33] ELLIS M, EGELUND J, SCHULTZ C, et al. Arabinogalactan-proteins:key regulators at the cell surface?[J]. Plant Physiology, 2010,153:403-419.
[34] MOTOSE H, SUGIYAMA M, FUKUDA H. A proteoglycan mediates inductive interaction during plant vascular development[J]. Nature,2004,429: 873-878.
[35] SHOWALTER A M. Arabinogalactan-proteins: Structure, expression and function[J]. Cellular and Molecular Life Sciences,2001,58(10): 1399-1417.
[36] LIU C G, MEHDY M C.A nonclassical arabinogalactan protein gene highly expressed in vascular tissues, AGP31, is transcriptionally repressed by methyl jasmonic acid inArabidopsis[J].Plant Physiology, 2007, 145:863-874.
[37] YANG J, SARDAR H S, MCGOVERN K R, et al. A lysine-rich arabinogalactan protein in Arabidopsis is essential for plant growth and development, including cell division and expansion[J]. The Plant Journal, 2007, 49(4):629-640.
[38] SARDAR H S, YANG J, SHOWALTER A M. Molecular interactions of arabinogalactan proteins with cortical microtubules and F-actin in bright yellow-2 tobacco cultured cells[J]. Plant Physiology, 2006,142(4): 1469-1479.