[1] ZHOU W, ZOU X, NAJMAEI S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Letters, 2013, 13 (6): 2615-2622. [2] CHEN C, LIN Y, ZHOU W, et al. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes[J]. Nature Electronics, 2021, 4 (9): 653-663.
[3] MENG L, ZHOU Z, XU M, et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition[J]. Nature Communications, 2021, 12 (1): 809.
[4] CHEN X, LEI B, ZHU Y, et al. Diverse spin-polarized in-gap states at grain boundaries of rhenium dichalcogenides induced by unsaturated Re–Re bonding[J]. ACS Materials Letters, 2021, 3 (10): 1513-1520.
[5] ZHU Y, TAO L, CHEN X, et al. Anisotropic point defects in rhenium diselenide monolayers[J]. iScience, 2021, 24 (12): 103456.
[6] ZHENG Z, YU L, GAO M, et al. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer[J]. Nature Communications, 2020, 11 (1): 3315.
[7] WU L, SHI J, ZHOU Z, et al. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics[J]. Nano Research, 2020, 13 (4): 1127-1132.
[8] WANG Z, CHOI J, XU M, et al. Optimizing electron densities of Ni-N-C complexes by hybrid coordination for efficient electrocatalytic CO2 reduction[J]. ChemSusChem, 2020, 13 (5): 929-937.
[9] CHEN W, SUN Z, WANG Z, et al. Direct observation of van der Waals stacking–dependent interlayer magnetism[J]. Science, 2019, 366 (6468): 983-987.
[10] LI T, JIANG S, SIVADAS N, et al. Pressure-controlled interlayer magnetism in atomically thin CrI3[J]. Nature Materials, 2019, 18 (12): 1303-1308.
[11] YANG S, XU X, HAN B, et al. Controlling the 2D magnetism of CrBr3 by van der Waals stacking engineering[J]. Journal of the American Chemical Society, 2023, 145 (51): 28184-28190.
[12] ZHOU Z, ZHAO X, WU L, et al. Dimensional crossover in self-intercalated antiferromagnetic V5S8 nanoflakes[J]. Physical Review B, 2022, 105 (23): 235433.
[13] JIANG T, Liu H, HUANG D, et al. Valley and band structure engineering of folded MoS2 bilayers[J]. Nature Nanotechnology, 2014, 9 (10): 825-829.
[14] RIBEIRO-PALAU R, ZHANG C, WATANABE K, et al. Twistable electronics with dynamically rotatable heterostructures[J]. Science, 2018, 361 (6403): 690-693.
[15] SHAN Y, LI Y, HUANG D, et al. Stacking symmetry governed second harmonic generation in graphene trilayers[J]. Science Advances, 2018, 4 (6): eaat0074.
[16] LUI C H, LI Z, MAK K F, et al. Observation of an electrically tunable band gap in trilayer graphene[J]. Nature Physics, 2011, 7 (12): 944-947.
[17] GUO Q, QI X, ZHANG L, et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal[J]. Nature, 2023, 613 (7942): 53-59.
[18] LUI C H, LI Z, CHEN Z, et al. Imaging stacking order in few-layer graphene[J]. Nano Letters, 2011, 11 (1): 164-169.
[19] HATTENDORF S, GEORGI A, LIEBMANN M, et al. Networks of ABA and ABC stacked graphene on mica observed by scanning tunneling microscopy[J]. Surface Science, 2013, 610: 53-58.
[20] JIANG L, WANG S, SHI Z, et al. Manipulation of domain-wall solitons in bi- and trilayer graphene[J]. Nature Nanotechnology, 2018, 13 (3): 204-208.
[21] ZHANG J, HAN J, PENG G, et al. Light-induced irreversible structural phase transition in trilayer graphene[J]. Light: Science & Applications, 2020, 9 (1): 174.
[22] LIN J, FANG W, ZHOU W, et al. AC/AB stacking boundaries in bilayer graphene[J]. Nano Lett, 2013, 13 (7): 3262-3268.
[23] ALDEN J S, TSEN A W, HUANG P Y, et al. Strain solitons and topological defects in bilayer graphene[J]. Proceedings of the National Academy of Sciences, 2013, 110 (28): 11256-11260.
[24] 周武. 石墨烯的低电压扫描透射电子显微学成像研究[J]. 电子显微学报, 2018, 37 (5): 524-531.
[25] TIAN H, MA Y, LI Z, et al. Disorder-tuned conductivity in amorphous monolayer carbon[J]. Nature, 2023, 615 (7950): 56-61.
[26] XU M, LI A, GAO M, et al. Single-atom electron microscopy for energy-related nanomaterials[J]. Journal of Materials Chemistry A, 2020, 8 (32): 16142-16165.
[27] CHEN X, LEI B, ZHU Y, et al. Pristine edge structures of T′′-phase transition metal dichalcogenides (ReSe2, ReS2) atomic layers[J]. Nanoscale, 2020, 12 (32): 17005-17012.
[28] LI D-D, ZHOU W. Low voltage scanning transmission electron microscopy for two-dimensional materials[J]. Acta Physica Sinica, 2017, 66 (21): 217303-217303.
[29] 朱亚彤,张昊,徐涛,等. 电子束辐照诱导二维氧化铟纳米片生长的原位电镜研究[J]. 电子显微学报, 2023, 42 (3): 275-282.
[30] 庞靖博,时金安,李昂,等. 二维半导体异质结MoS2/MoSe2中一维量子阱形成机制的电子显微学研究[J]. 电子显微学报,2024,43 (1): 29-37.
[31] ZHU J, HU Z, GUO S, et al. Non-epitaxial growth of highly oriented transition metal dichalcogenides with density-controlled twin boundaries[J]. The Innovation, 2023, 4 (6): 100502. [32] 李想,姚婷婷,江亦潇,等. 两种衬底上Cr2O3薄膜的制备与显微结构表征[J]. 电子显微学报, 2022, 41 (4): 393-398.
[33] 高春阳,姚婷婷,江亦潇,等. Fe3O4外延薄膜的制备与显微结构表征[J]. 电子显微学报, 2022, 41 (2): 105-110.
[34] PING J, FUHRER M S. Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy[J]. Nano Letters, 2012, 12 (9): 4635-4641.
[35] KITTEL C. Introduction to solid state physics[M]. Beijing: Chemical Industry Press, 2005.
[36] PUECH P, GERBER I C, PIAZZA F, et al. Combining low and high electron energy diffractions as a powerful tool for studying 2D materials[J]. Applied Physics A, 2021, 127 (6): 485. [37] BROWN L, HOVDEN R, HUANG P, et al. Twinning and twisting of tri- and bilayer graphene[J]. Nano Letters, 2012, 12 (3): 1609-1615.
[38] MEYER J C, GEIM A K, KATSNELSON M I, et al. On the roughness of single- and bi-layer graphene membranes[J]. Solid State Communications, 2007, 143 (1): 101-109.
[39] MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446 (7131): 60-63.
[40] WILLIAMS D B, CARTER C B. Transmission electron microscopy: A textbook for materials science [M]. Beijing: Higher Education Press, 2015.
[41] DOYLE P A, TURNER P S. Relativistic hartree-fock X-ray and electron scattering factors[J]. Acta Crystallographica Section A, 1968, 24 (3): 390-397.