原位电学引入PbTiO3铁电薄膜高密度90°畴的研究
李 柱,刘中然,陈嘉璐,任召辉,田 鹤*
(1. 浙江大学 电子显微镜中心,硅材料国家重点实验室,材料科学与工程学院,浙江 杭州 310027;2. 浙江大学 硅材料国家重点实验室,材料科学与工程学院,浙江 杭州310027)
摘 要 铁电薄膜材料在低功耗、高密度信息存储领域具有广阔的应用前景,有望制造高性能微电子器件。尤其是铁电体中的90°畴,在提高压电响应、应变协调以及柔性器件的性能中发挥着关键作用。大多数90°畴的形成是通过晶格失配、改变沉积温度和速率等生长条件获得的,90°畴的生成难以精确可控,制约了90°畴在铁电薄膜中的应用。因此,本文采用原位电学方法,在PbTiO3铁电薄膜中生成了高密度90°畴和类涡旋畴,通过对外加电场下90°畴的动态形成和原子级结构的研究,为铁电薄膜中90°畴的调控与应用了提供新的方法和理论依据。
关键词 原位透射电子显微镜;铁电薄膜;PbTiO3;90°畴
中图分类号:TN384;TG115.21+5.3;TB34;TB82 文献标识码:A doi:10.3969/j.issn.1000-6281.2025.02.001
In situ electrical introduction of PbTiO3 ferroelectric thin films with high density 90° domains
LI ZHU,LIU ZHONGran,CHEN Jialu,REN Zhaohui,TIAN He* (1. Zhejiang University Electron Microscope Center, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Hangzhou Zhejiang 310027;2. Zhejiang University, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Hangzhou Zhejiang 310027, China)
Abstract Ferroelectric thin-film materials have promising applications in low-power and high-density information storage and are poised to enable the fabrication of high-performance microelectronic devices. 90° domains in ferroelectrics are crucial for enhancing piezoelectric responses, strain coordination, and the performance of ferroelectric logic devices. Most of the 90° domains generate due to lattice mismatch or by adjusting growth parameters, such as deposition temperature and rate. However, the precise control over their generation remains challenging. This limitation hinders the broader application of 90° domains in ferroelectric thin films. In this study, we used in situ electrical methods to generate high-density 90° domains and vortex-like domains in PbTiO3 ferroelectric thin films. We investigated the dynamic formation and atomic-level structure of these 90° domains under an applied electric field. This study provides a new method and theoretical foundation for controlling and utilizing 90° domains in ferroelectric thin films.
Keywords In situ transmission electron microscopy; ferroelectric thin film; PbTiO3; 90° domain
[1] JI D, CAI S, PAUDEL T R, et al. Freestanding crystalline oxide perovskites down to the monolayer limit[J]. Nature, 2019, 570(7759):87-90.
[2] EOM C B, TROLIER-MCKINSTRY S. Thin-film piezoelectric MEMS[J]. Mrs Bulletin, 2012, 37(11):1007-1017.
[3] HOFFMAN J, PAN X, REINER J W, et al. Ferroelectric field effect transistors for memory applications[J]. Advanced Materials, 2010, 22(26/27):2957-2961.
[4] SCOTT J F, ARAUJO C. Ferroelectric memories[J]. Science, 1990, 246(4936):1400-1405.
[5] KIM T S, KIM C H, OH M H. Structural and electrical properties of rf magnetron-sputtered Ba1-xSrxTiO3 thin films on indium-tin-oxide-coated glass substrate[J]. Journal of Applied Physics, 1994, 75(12):7998-8003.
[6] LI Y L, HU S Y, LIU Z K, et al. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films[J]. Acta Materialia, 2002, 50(2):395-411.
[7] GARCIA V, FUSIL S, BOUZEHOUANE K, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states[J]. Nature, 2009, 460(7251):81-84.
[8] SU D, ZHU J S, WANG Y N, et al. Different domain structures and their effects on fatigue behavior in Bi3TiTaO9 and SrBi2Ta2O9 ceramics[J]. Journal of Applied Physics, 2003, 93(8):4784-4787.
[9] AGAR J C, DAMODARAN A R, OKATAN M B, et al. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films[J]. Nature Materials, 2016, 15(5):549.
[10] NAGARAJAN V, ROYTBURD A, STANISHEVSKY A, et al. Dynamics of ferroelastic domains in ferroelectric thin films[J]. Nature Materials, 2003, 2(1):43-47.
[11] QIAN C X, FENG H J, ZHANG Q, et al. Domain wall conduction in calcium-modified lead titanate for polarization tunable photovoltaic devices[J]. Cell Reports Physical Science, 2020, 1(4):100043.
[12] SETTER N, DAMJANOVIC D, ENG L, et al. Ferroelectric thin films: Review of materials, properties, and applications[J]. Journal of Applied Physics, 2006(5):100.
[13] NELSON C T, GAO P, JOKISAARI J R, et al. Domain dynamics during ferroelectric switching[J]. Science, 2011, 334(6058):968-971.
[14] 刘嘉琦, 冯燕朋, 朱银莲, 等. 缓冲层对铁电PbTiO3薄膜微结构的影响[J]. 电子显微学报, 2020, 39(6):673-679.
[15] LU X, CHEN Z, CAO Y, et al. Mechanical-force-induced non-local collective ferroelastic switching in epitaxial lead-titanate thin films[J]. Nature Communications, 2019, 10(1):3951.
[16] FENG Y, TANG Y, MA D, et al. Thickness-dependent evolution of piezoresponses and stripe 90° domains in (101)-oriented ferroelectric PbTiO3 thin films[J]. ACS Applied Materials & Interfaces, 2018, 10(29):24627-24637.
[17] LI S, ZHU Y L, TANG Y L, et al. Thickness-dependent a1/a2 domain evolution in ferroelectric PbTiO3 films[J]. Acta Materialia, 2017, 131:123-130. [18] 冯燕朋, 朱银莲, 唐云龙, 等. PbTiO3/SrTiO3(001)复杂畴组态和缺陷的研究[J]. 电子显微学报, 2018, 37(6):556-562.
[19] KUROIWA Y, AOYAGI S, SAWADA A, et al. Evidence for Pb-O covalency in tetragonal PbTiO3[J]. Physical Review Letters, 2001, 87(21):217601.
[20] SHIN Y H, GRINBERG I, CHEN I W, et al. Nucleation and growth mechanism of ferroelectric domain-wall motion[J]. Nature, 2007, 449(7164):881-884.
[21] GAO P, NELSON C T, JOKISAARI J R, et al. Revealing the role of defects in ferroelectric switching with atomic resolution[J]. Nature Communications, 2011, 2(1):591.
[22] AOYAGI K, KIGUCHI T, EHARA Y, et al. Diffraction contrast analysis of 90° and 180° ferroelectric domain structures of PbTiO3 thin films[J]. Science and Technology of Advanced Materials, 2011, 12(3):034403.
[23] CATALAN G, LUBK A H, VLOOSWIJK A H, et al. Flexoelectric rotation of polarization in ferroelectric thin films[J]. Nature Materials, 2011, 10(12):963-967.
[24] PAN X Q, NELSON C T, ZHANG Y, et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces[J]. Nano Letters, 2011, 11(2):828-834.
[25] TANG Y L, ZHU Y L, MA X L, et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films[J]. Science, 2015, 348(6234):547-551.