转运必需内体分选复合物螺旋纤丝Vps24-Vps2的冷冻电镜结构研究
刘德生#,李耀旺#,孙 珊*
(1.膜生物学国家重点实验室,北京生物结构前沿研究中心,清华大学生命科学学院,北京 100084;2.南方科技大学生命科学学院,广东 深圳 518005)
摘 要 转运必需内体分选复合物-III(endosomal sorting complex required for transport-III,ESCRT-III)介导了一系列细胞膜重塑事件,包括多囊体的形成、细胞分裂和病毒释放等。这些过程的关键步骤之一是将ESCRT-III蛋白亚基组装成纤丝状结构。在本研究中,作者利用冷冻电镜技术解析了由Vps24和Vps2融合蛋白(Vps24-Vps2)形成的双链螺旋纤丝的结构,分辨率为4.07Å。在该结构中,呈伸展构象的Vps24-Vps2单体首先形成反向结合的二聚体,二聚体之间再错位结合形成一股螺旋,两股螺旋互相缠绕最终形成纤丝。该结构为理解ESCRT-III丝状结构组装以及解聚过程提供了结构基础。
关键词 转运必需内体分选复合物;ESCRT;Vps24;Vps2,冷冻电镜结构
中图分类号: Q7;Q71;Q244 文献标识码:ADoi:10.3969/j.issn.1000-6281.2025.01.004
Cryo-EM structure of the ESCRT-III Vps24-Vps2 filament
LIU Desheng#,LI Yao-wang#,SUN Shan*
(1. State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084;2. School of Life Sciences, Southern University of Science and Technology, Shenzhen Guangdong 518005, China)
Abstract The cellular ESCRT-III proteins mediate a variety of membrane remodeling activities events such as multivesicular body biogenesis, midbody abscission during cytokinesis, wound plasma membrane repair, and enveloped virus budding. The assembly of ESCRT-III subunits into filament-like structures is essential for these processes. In this study, we used cryo-electron microscopy to resolve the structure of a double-stranded helical filament formed by a chimeric ESCRT-III subunit Vps24-Vps2 from Saccharomyces cerevisiae at a resolution of 4.07 Å. In each protofilament, the Vps24-Vps2 monomer is in an extended open conformation and assemble in a misaligned manner. Neighboring Vps24-2 monomers between two protofilaments adopt an inverse arrangement to entangle each other into a filament. Our structure provides a structural basis for understanding the assembly and disassembly of ESCRT-III filaments.
Keywords endosomal sorting complex required for transport;Vps24;Vps2;Cryo-EM structure
[1] OLMOS Y. The ESCRT machinery: Remodeling, repairing, and sealing membranes[J]. Membranes, 2022, 12(6): 633.
[2] SKOWYRA M L, SCHLESINGER P H, NAISMITH T V, et al. Triggered recruitment of ESCRT machinery promotes endolysosomal repair[J]. Science, 2018, 360(6384):eaar5078.
[3] HURLEY J H. ESCRTs are everywhere[J]. The EMBO Journal, 2015, 34(19):2398–2407.
[4] JOHNSON D S, BLECK M, SIMON S M. Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly[J]. eLife, 2018, 7:e36221.
[5] PRAG G, WATSON H, KIM Y C, et al. The VPS27/HSE1 complex is a GAT Domain-Based scaffold for Ubiquitin-Dependent sorting[J]. Developmental Cell, 2007, 12(6):973–986.
[6] KAUL Z, CHAKRABARTI O. Tumor susceptibility gene 101 regulates predisposition to apoptosis via ESCRT machinery accessory proteins[J]. Molecular Biology of the Cell, 2017, 28(15):2106–2122.
[7] MORITA E, SANDRIN V, ALAM S L, et al. Identification of human MVB12 Proteins as ESCRT-I subunits that function in HIV budding[J]. Cell Host & Microbe, 2007, 2(1):41–53.
[8] CARRASQUILLO R, TIAN, D, KRISHNA S, et al. SNF8, a member of the ESCRT-II complex, interacts with TRPC6 and enhances its channel activity[J]. BMC Cell Biology, 2012, 13:33.
[9] HARKER-KIRSCHNECK L, HAFNER A E, YAO T, et al. Physical mechanisms of ESCRT-III–driven cell division[J]. Proceedings of the National Academy of Sciences, 2022, 119(1):e2107763119.
[10] XIAO J, XIA H, YOSHINO-KOH, et al. Structural characterization of the ATPAsE reaction cycle of endosomal AAA protein VPS4[J]. Journal of Molecular Biology, 2007, 374(3):655–670.
[11] MCCULLOUGH J, FROST A, SUNDQUIST W I. Structures, functions, and dynamics of ESCRT-III/VPS4 membrane remodeling and fission complexes[J]. Annual Review of Cell and Developmental Biology, 2018, 34(1):85–109.
[12] YANG B, STJEPANOVIC G, SHEN Q, et al. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation[J]. Nature Structural & Molecular Biology, 2015, 22(6):492–498.
[13] GHAZI-TABATABAI S, SAKSENA S, SHORT J M, et al. Structure and disassembly of filaments formed by the ESCRT-III Subunit VPS24[J]. Structure, 2008, 16(9):1345–1356.
[14] EFFANTIN G, DORDOR A, SANDRIN V, et al. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding[J]. Cell Microbiol,2013, 15:213–226.
[15] MCCULLOUGH J, CLIPPINGER A K, TALLEDGE N, et al. Structure and membrane remodeling activity of ESCRT-III helical polymers[J]. Science, 2015, 350(6267):1548–1551.
[16] MUZIOŁ T, PINEDA-MOLINA E, RAVELLI R B, et al. Structural basis for budding by the ESCRT-III factor CHMP3[J]. Developmental Cell, 2006, 10(6):821–830.
[17] LATA S,ROESSLE M,SOLOMONS J, et al. Structural basis for autoinhibition of ESCRT-III CHMP3[J]. Journal of Molecular Biology, 2008, 378(4):818–827.