塞姆利基森林病毒的冷冻电镜结构研究
贾旭东#,李锶铎#,于宏洋#,张勤奋,何 键*
(1.中山大学,生命科学学院,广东 广州 510275;2.生物岛实验室,广东 广州 510005)
摘 要 塞姆利基森林病毒(Semliki forest virus, SFV)是一种典型的甲病毒,主要通过节肢动物作为媒介进行传播,对人类及多种哺乳动物构成潜在的感染威胁。然而当前针对SFV的结构生物学研究相对不足,限制了对其在病毒-宿主互作、入侵机制以及病毒颗粒组装与成熟过程的认知。本研究采用冷冻电镜技术对SFV成熟颗粒的三维结构进行了高精度解析,并系统分析了囊膜蛋白E1和E2上的N-糖基化位点及二硫键,揭示了这些结构特征在维持病毒蛋白稳定性中的关键作用。这些发现对于阐明SFV的生物学特性、推动抗病毒药物研发及优化疫苗设计都具有重要意义。
关键词 塞姆利基森林病毒;甲病毒;N-糖基化;二硫键;冷冻电镜
中图分类号:Q336;Q937
文献标识码:Doi:10.3969/j.issn.1000-6281.2025.01.003
Structural study of Semliki forest virus through Cryo-EM
JIA Xudong#, LI Siduo#, YU Hongyang#, ZHANG Qinfen, HE Jian*
(1.School of Life Sciences, Sun Yat-sen University, Guangzhou Guangdong 510275;2.Bioland Lab, Guangzhou Guangdong 510005,China)
Abstract Semliki forest virus (SFV), a typical member of the Alphavirus genus, is mainly transmitted through arthropod vectors and poses a potential infection threat to humans and various mammals. However, the current structural biology research on SFV is relatively insufficient, which limits the understanding of its interactions with host cells, invasion mechanisms, and the processes involved in virion assembly and maturation. To address this, we analyzed the three-dimensional structure of mature SFV particles using cryo-electron microscopy technology. The N-glycosylation sites and disulfide bonds on envelope proteins E1 and E2 were systematically analyzed, revealing their key roles in maintaining viral protein stability. These findings are of significance for elucidating the biological characteristics of SFV, advancing antiviral drug development, and optimizing vaccine design.
Keywords Semliki forest virus;alphavirus;N-glycosylation;disulfide bond;Cryo-EM
[1] PAYNE S. Family Togaviridae [M]. Viruses. 2017: 141-148.
[2] LIM E X Y, LEE W S, MADZOKERE E T, et al. Mosquitoes as Suitable Vectors for Alphaviruses [J]. Viruses, 2018, 10(2): 84.
[3] MATHIOT C C, GRIMAUD G, GARRY P, et al. An outbreak of human Semliki Forest virus infections in Central African Republic [J]. Am J Trop Med Hyg, 1990, 42(4): 386-393.
[4] WILLEMS W R, KALUZA G, BOSCHEK C B, et al. Semliki forest virus: cause of a fatal case of human encephalitis [J]. Science, 1979, 203(4385): 1127-1129.
[5] RIEDEL H, LEHRACH H, GAROFF H. Nucleotide sequence at the junction between the nonstructural and the structural genes of the semliki forest virus genome [J]. J Virol, 1982, 42(2): 725-729.
[6] KääRIäINEN L, TAKKINEN K, KERäNEN S, et al. Replication of the genome of alphaviruses [J]. J Cell Sci Suppl, 1987, 7: 231-250.
[7] CAO D, MA B, CAO Z, et al. Structure of Semliki Forest virus in complex with its receptor VLDLR [J]. Cell, 2023, 186(10): 2208-2218.e2215.
[8] JOSE J, SNYDER J E, KUHN R J. A structural and functional perspective of alphavirus replication and assembly [J]. Future Microbiol, 2009, 4(7): 837-856.
[9] MANCINI E J, CLARKE M, GOWEN B E, et al. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus [J]. Mol Cell, 2000, 5(2): 255-266.
[10] 朱东杰, 章新政. 冷冻电镜解析病毒颗粒中的蛋白质结构 [J]. 电子显微学报, 2023, 42(01): 94-103.
[11] PATEL A, TOSO D, LITVAK A, et al. Efficient graphene oxide coating improves cryo-EM sample preparation and data collection from tilted grids [J]. bioRxiv, 2021: 2021.2003.2008.434344.
[12] PUNJANI A, RUBINSTEIN J L, FLEET D J, et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination [J]. Nat Methods, 2017, 14(3): 290-296.
[13] ROHOU A, GRIGORIEFF N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs [J]. J Struct Biol, 2015, 192(2): 216-221.
[14] WATERHOUSE A, BERTONI M, BIENERT S, et al. SWISS-MODEL: homology modelling of protein structures and complexes [J]. Nucleic Acids Res, 2018, 46(W1): W296-W303.
[15] MENG E C, GODDARD T D, PETTERSEN E F, et al. UCSF ChimeraX: Tools for structure building and analysis [J]. Protein Sci, 2023, 32(11): e4792.
[16] EMSLEY P, LOHKAMP B, SCOTT W G, et al. Features and development of Coot [J]. Acta Crystallogr D Biol Crystallogr, 2010, 66(Pt 4): 486-501.
[17] ADAMS P D, AFONINE P V, BUNKóCZI G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution [J]. Acta Crystallogr D Biol Crystallogr, 2010, 66(Pt 2): 213-221.
[18] ZHU D, WANG X, FANG Q, et al. Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions [J]. Nat Commun, 2018, 9(1): 1552.
[19] CHEN M, SCHMID M F, CHIU W. Improving resolution and resolvability of single-particle cryoEM structures using Gaussian mixture models [J]. Nat Methods, 2024, 21(1): 37-40.
[20] LI L, JOSE J, XIANG Y, et al. Structural changes of envelope proteins during alphavirus fusion [J]. Nature, 2010, 468(7324): 705-708.
[21] CHEN L, WANG M, ZHU D, et al. Implication for alphavirus host-cell entry and assembly indicated by a 3.5Å resolution cryo-EM structure [J]. Nat Commun, 2018, 9(1): 5326.
[22] WANG A, ZHOU F, LIU C, et al. Structure of infective Getah virus at 2.8 Å resolution determined by cryo-electron microscopy [J]. Cell Discov, 2022, 8(1): 12.
[23] CHOI H K, LU G, LEE S, et al. Structure of Semliki Forest virus core protein [J]. Proteins, 1997, 27(3): 345-359.
[24] ZHANG W, MUKHOPADHYAY S, PLETNEV S V, et al. Placement of the structural proteins in Sindbis virus [J]. J Virol, 2002, 76(22): 11645-11658.
[25] FENG T, ZHANG J, CHEN Z, et al. Glycosylation of viral proteins: Implication in virus-host interaction and virulence [J]. Virulence, 2022, 13(1): 670-683.
[26] KALUZA G. Effect of impaired glycosylation on the biosynthesis of Semliki forest virus glycoproteins [J]. J Virol, 1975, 16(3): 602-612.
[27] SCHOLTISSEK C, KALUZA G. Interference with the glycosylation of Semliki Forest virus proteins [J]. Med Biol, 1975, 53(5): 357-364.
[28] GAROFF H, SCHWARZ R T. Glycosylation is not necessary for membrane insertion and cleavage of Semliki Forest virus membrane proteins [J]. Nature, 1978, 274(5670): 487-490.
[29] REPGES-ILLGUTH S, KALUZA G. Differences in antigenicity of E2 in Semliki Forest virus particles and in infected cells [J]. Arch Virol, 1994, 135(3-4): 433-435.
[30] FASS D. Disulfide bonding in protein biophysics [J]. Annu Rev Biophys, 2012, 41: 63-79.
[31] SAYERS E W, BOLTON E E, BRISTER J R, et al. Database resources of the national center for biotechnology information [J]. Nucleic Acids Res, 2022, 50(D1): D20-D26.
[32] SONG H, ZHAO Z, CHAI Y, et al. Molecular Basis of Arthritogenic Alphavirus Receptor MXRA8 Binding to Chikungunya Virus Envelope Protein [J]. Cell, 2019, 177(7): 1714-1724.e1712.
[33] BASORE K, KIM A S, NELSON C A, et al. Cryo-EM Structure of Chikungunya Virus in Complex with the Mxra8 Receptor [J]. Cell, 2019, 177(7): 1725-1737.e1716.
[34] BASORE K, MA H, KAFAI N M, et al. Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor [J]. Nature, 2021, 598(7882): 672-676.
[35] MA B, HUANG C, MA J, et al. Structure of Venezuelan equine encephalitis virus with its receptor LDLRAD3 [J]. Nature, 2021, 598(7882): 677-681.
[36] ADAMS L J, RAJU S, MA H, et al. Structural and functional basis of VLDLR usage by Eastern equine encephalitis virus [J]. Cell, 2024, 187(2): 360-374.e319.