不同状态禽呼肠孤病毒的冷冻电镜结构研究
刘京路#, 高 立#, 王有望, 祁小乐, 张雪利,包珂岩, 高玉龙*, 王笑梅*, 朱 平*
(1. 中国科学院生物物理研究所 表观遗传调控与干预重点实验室,北京 100101; 2. 中国农业科学院哈尔滨兽医研究所 动物疫病防控全国重点实验室 禽免疫抑制病创新团队,黑龙江 哈尔滨 150069; 3. 西南民族大学 畜牧兽医学院,四川 成都 610041 ; 4. 中国科学院大学,北京 100049)
摘 要 禽呼肠孤病毒(Avian reovirus,ARV)是一种双链RNA 病毒,对家禽养殖业构成严重威胁。本文利用冷冻电镜技术解析了ARV病毒的完整病毒颗粒(virion)以及处于转录状态的病毒核心颗粒(T-core)的高分辨率三维结构。对比分析表明,ARV病毒virion和T-core颗粒的塔状突起蛋白λC存在明显结构差异,显示其在病毒转录过程中的重要作用。在病毒转录态核心颗粒中,作者发现σA蛋白与双链RNA存在较强结合,并确认了起关键作用的氨基酸残基。同时,分析了ARV病毒内部转录酶RdRP以及基因组三维结构,获得了处于转录过程中ARV病毒核心颗粒内部基因组的三维分布。
关键词 禽呼肠孤病毒;冷冻电镜;塔状突起;RdRP;双链RNA
中图分类号: Q71;S831.7;S852.62;Q336 文献标识码:A Doi:10.3969/j.issn.1000-6281.2025.01.002
Cryo-EM structural analysis of avian reovirus in different states
LIU Jinglu#, GAO Li2#, WANG Youwang, QI Xiaole, ZHANG Xueli,BAO Keyan, GAO Yulong*, WANG Xiaomei*, ZHU Ping*
(1. Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics of the Chinese Academy of Sciences, Beijing 100101;2. State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Heilongjiang 150069;3. College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu Sichuan 610041;4. University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract Avian reovirus (ARV) is a double-stranded RNA virus that poses a serious threat to the poultry industry. In this study, we employed cryo-electron microscopy (cryo-EM) to resolve the three-dimensional structures of both the virion and the transcribing core particle (T-core) of ARV. Comparative analysis revealed significant difference in the structures of turrent protein λC in the virion and T-core particles, suggesting that λC plays a key role in the transcription process of ARV. Additionally, the σA protein in the T-core particle exhibits strong binding to the double-stranded RNA, and the key amino acid residues involved in this binding were identified. Furthermore, we analyzed the internal structures of viral RNA-dependent RNA polymerase (RdRP), which revealed the three-dimensional organization and distribution of the RNA genome within the transcribing ARV core particle.
Keywords Avian reovirus; Cryo-EM; turret; RdRP; double-stranded-RNA
[1] BENAVENTE J, MARTÍNEZ-COSTAS J. Avian reovirus: structure and biology[J/OL]. Virus Research, 2007, 123(2): 105-119. DOI:10.1016/j.virusres.2006.09.005.
[2] 李彬, 韩晓青, 刘平, 等. 2020—2021年我国部分省份禽呼肠孤病毒分子流行病学调查[J]. 中国动物检疫, 2022, 39(8): 6-11.
[3] PETRONE-GARCIA V M, GONZALEZ-SOTO J, LOPEZ-ARELLANO R, et al. Evaluation of avian reovirus S1133 vaccine strain in neonatal broiler chickens in gastrointestinal integrity and performance in a large-scale commercial field trial[J/OL]. Vaccines, 2021, 9(8): 817. DOI:10.3390/vaccines9080817.
[4] 钱金涵, 朱亭帆, 王强, 等. 变异型高致病性鹅源禽呼肠孤病毒的分离和鉴定[J]. 中国兽医杂志, 2024, 60(2): 1-8.
[5] SHAPOURI M R, ARELLA M, SILIM A. Evidence for the multimeric nature and cell binding ability of avian reovirus sigma 3 protein[J/OL]. The Journal of General Virology, 1996, 77 ( Pt 6): 1203-1210. DOI:10.1099/0022-1317-77-6-1203.
[6] GOLDENBERG D, LUBLIN A, ROSENBLUTH E, et al. Optimized polypeptide for a subunit vaccine against avian reovirus[J/OL]. Vaccine, 2016, 34(27): 3178-3183. DOI:10.1016/j.vaccine.2016.04.036.
[7] VARELA R, BENAVENTE J. Protein coding assignment of avian reovirus strain S1133.[J]. Journal of Virology, 1994, 68(10): 6775-6777.
[8] BODELÓN G, LABRADA L, MARTÍNEZ-COSTAS J, et al. Modification of late membrane permeability in avian reovirus-infected cells: viroporin activity of the S1-encoded nonstructural p10 protein[J/OL]. Journal of Biological Chemistry, 2002, 277(20): 17789-17796. DOI:10.1074/jbc.M202018200.
[9] COSTAS C, MARTÍNEZ-COSTAS J, BODELÓN G, et al. The second open reading frame of the avian reovirus S1 gene encodes a transcription-dependent and CRM1-independent nucleocytoplasmic shuttling protein[J/OL]. Journal of Virology, 2005, 79(4): 2141-2150. DOI:10.1128/JVI.79.4.2141-2150.2005.
[10] 朱东杰, 章新政. 冷冻电镜解析病毒颗粒中的蛋白质结构[J]. 电子显微学报, 2023, 42(1): 94-103.
[11] 汪进鸿, 陈朕欣, 邓竞, 等. 透射电镜相机及单颗粒冷冻电镜数据预处理流程综述[J]. 电子显微学报, 2022, 41(6): 654-663.
[12] LIU H, CHENG L. Cryo-EM shows the polymerase structures and a nonspooled genome within a dsRNA virus[J/OL]. Science, 2015, 349(6254): 1347-1350. DOI:10.1126/science.aaa4938.
[13] BAO K, ZHANG X, LI D, et al. In situ structures of polymerase complex of mammalian reovirus illuminate RdRp activation and transcription regulation[J/OL]. Proceedings of the National Academy of Sciences, 2022, 119(50): e2203054119. DOI:10.1073/pnas.2203054119.
[14] ZHENG S Q, PALOVCAK E, ARMACHE J P, et al. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy[J/OL]. Nature Methods, 2017, 14(4): 331-332. DOI:10.1038/nmeth.4193.
[15] PUNJANI A, RUBINSTEIN J L, FLEET D J, et al. CryoSPARC: Algorithms for rapid unsupervised Cryo-EM structure determination[J/OL]. Nature Methods, 2017, 14(3): 290-296. DOI:10.1038/nmeth.4169.
[16] SCHERES S H W. RELION: Implementation of a Bayesian approach to Cryo-EM structure determination[J/OL]. Journal of Structural Biology, 2012, 180(3): 519-530. DOI:10.1016/j.jsb.2012.09.006.
[17] HE J, LI T, HUANG S Y. Improvement of Cryo-EM maps by simultaneous local and non-local deep learning[J/OL]. Nature Communications, 2023, 14(1): 3217. DOI:10.1038/s41467-023-39031-1.
[18] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J/OL]. Nature, 2021, 596(7873): 583-589. DOI:10.1038/s41586-021-03819-2.
[19] GODDARD T D, HUANG C C, MENG E C, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis[J/OL]. Protein Science : A Publication of the Protein Society, 2018, 27(1): 14. DOI:10.1002/pro.3235.
[20] EMSLEY P, COWTAN K. Coot: Model-building tools for molecular graphics[J/OL]. Acta Crystallographica Section D Biological Crystallography, 2004, 60(12): 2126-2132. DOI:10.1107/S0907444904019158.
[21] LIEBSCHNER D, AFONINE P V, BAKER M L, et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix[J/OL]. Acta Crystallographica Section D: Structural Biology, 2019, 75(10): 861-877. DOI:10.1107/S2059798319011471.
[22] DING K, NGUYEN L, ZHOU Z H. In situ structures of the polymerase complex and RNA genome show how aquareovirus transcription machineries respond to uncoating[J/OL]. Journal of Virology, 2018, 92(21): e00774-18. DOI:10.1128/JVI.00774-18.
[23] GUARDADO-CALVO P, VAZQUEZ-IGLESIAS L, MARTINEZ-COSTAS J, et al. Crystal structure of the avian reovirus inner capsid protein σA[J/OL]. Journal of Virology, 2008, 82(22): 11208-11216. DOI:10.1128/JVI.00733-08.