共聚焦显微拉曼光谱仪的新功能设计与实现
张秀英,彭其明,杨 阳
(南京工业大学柔性电子(未来技术)学院,江苏南京211816)
摘 要 基于激光共聚焦显微拉曼光谱仪光路,设计加入偏振片和半波片,实现微区角分辨偏振光谱测试功能,利用吉时利2400源表,设计并搭建可通电的样品夹持装置,实现微区电致发光光谱成像功能;采用黑磷和钙钛矿发光二极管作为实验样品,分别验证了微区角分辨偏振拉曼光谱测试功能和微区电致发光光谱成像功能;最后通过对钙钛矿薄膜器件的微区电致发光光谱成像结果和黑磷微区角分辨偏振拉曼光谱测试结果分析,证明设计的新功能可实现微区角分辨偏振拉曼光谱测试和微区电致发光光谱成像,为进一步研究二维材料晶体取向和半导体发光器件光电性能衰减老化机制提供了表征手段,供其他用户借鉴并推广使用。
关键词 拉曼光谱仪;光路设计;微区偏振光谱;微区电致发光;功能实现
中图分类号:N33;O433;O472
文献标识码:A doi:10.3969/j.issn.1000-6281.2024.04.009
Design and implementation of new function of the laser confocal micro-Raman spectrometer
ZHANG Xiuying,PENG Qiming,YANG Yang
(School of flexible electronics (future technologies), Nanjing Tech University, Nanjing Jiangsu 211816,China)
Abstract Based on the laser confocal micro-Raman spectrometer, an optical path was designed by adding a polarizer and a half wave plate to test the angle-resolved polarized (ARP) spectrum in the micro area. An electrified sample holder was designed using the Keithley 2400 source meter to obtain the micro-area electroluminescence spectrum of PeLEDs. In the experiment, black phosphorus was used to verify the functionality of the micro-area angle-resolved polarized Raman (ARPR) spectrum, and a PeLED was used to verify the mapping function of the micro-area electroluminescence spectrum. The results showed that the micro-area angle-resolved polarization Raman spectrum of black phosphorus was consistent with those in the literature, and the mapping of the micro-area electroluminescence spectrum of the PeLED was successfully obtained. This demonstrated that both newly designed functions were effective. The study provides a characterization method for further investigating the crystal orientation of two-dimensional materials and the aging mechanism of optoelectronic properties of semiconductor light-emitting devices. It can serve as a reference for other users.
Keywords Raman spectrometer; optical path design; micro-area polarization spectrum; micro-area electroluminescence; function realization
[1] SATISH R, ARAVINDAN V, LING W C, et al. Carbon-coated Li3Nd3W2O12: A high power and low-voltage insertion anode with exceptional cycleability for Li-ion batteries[J]. Advanced Energy Materials, 2014, 4(9): 1301715.
[2] LI Y, CHEN X, DOLOCAN A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455.
[3] YESILTAS M, JARET S, YOUNG J, et al. Three-dimensional raman tomographic microspectroscopy: A novel imaging technique[J]. Earth and Space Science, 2018, 5(8): 380-392.
[4] LI X, WANG H, CUI Z, et al. Exceptional oxygen evolution reactivities on CaCoO3 and SrCoO3[J]. Science Advances, 2019, 5(8): eaav6262.
[5] GAO J, WU W, JIA L, et al. Raman and infrared spectra to monitor the phase transition of natural kyanite under static compression[J]. Journal of Raman Spectroscopy, 2020, 51(10): 2102-2111.
[6] WANG F, ZHANG Z, ZHANG Y, et al. Honeycomb RhI3 flakes with high environmental stability for optoelectronics[J]. Advanced Materials, 2020, 32(25): 2001979.
[7] DU P, LI J, WANG L, et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement[J]. Nature Communications, 2021, 12(1): 4751.
[8] YI X, SONG Y, XU X, et al. Development of a fast Raman-assisted antibiotic susceptibility test (FRAST) for the antibiotic resistance analysis of clinical urine and blood samples[J]. Analytical Chemistry, 2021, 93(12): 5098-5106.
[9] SUGIYAMA K, MARZI J, ALBER J, et al. Raman microspectroscopy and Raman imaging reveal biomarkers specific for thoracic aortic aneurysms[J]. Cell Reports Medicine, 2021, 2(5):100261.
[10] CAVALAZZI B, LEMELLE L, SIMIONOVICI A, et al. Cellular remains in a~3.42-billion-year-old subseafloor hydrothermal environment[J]. Science Advances, 2021, 7(29): eabf3963.
[11] PI L, HU C, SHEN W, et al. Highly in-plane anisotropic 2D PdSe2 for polarized photodetection with orientation selectivity[J]. Advanced Functional Materials, 2021, 31(3): 2006774.
[12] LI X, WANG X, HONG J, et al. Nanoassembly growth model for subdomain and grain boundary formation in 1T′ layered ReS2[J]. Advanced Functional Materials, 2019, 29(49): 1906385.
[13] PEREVEDENTSEV A, CAMPOY-QUILES M. Rapid and high-resolution patterning of microstructure and composition in organic semiconductors using ‘molecular gates’[J]. Nature Communications, 2020, 11(1): 3610.
[14] ZHANG D, LIU Y, HE M, et al. Room temperature near unity spin polarization in 2D Van der Waals heterostructures[J]. Nature Communications, 2020, 11(1): 4442.
[15] XU X, PAN Y, LIU S, et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2[J]. Science, 2021, 372(6538): 195-200.
[16] SHENG F, HUA C, CHENG M, et al. Rashba valleys and quantum Hall states in few-layer black arsenic[J]. Nature, 2021, 593(7857): 56-60.
[17] WEN T, LI J, ZHANG M, et al. Discerning the vibrational nature of ReS2 Raman modes using solid-angle-resolved Raman spectroscopy[J]. ACS Photonics, 2022, 9(11): 3557-3562.
[18] 关苑君,容婵,梁翠莎,等. 共聚焦和超分辨显微荧光图像的共定位分析浅谈[J]. 电子显微学报,2020, 39(1):90-99.
[19] 曲晓丽,朱楠,王鑫垚,等. 激光共聚焦显微镜的overview功能应用于古气候纹层学的扫描技巧[J]. 电子显微学报,2021, 40(3):265-269.
[20] HUANG S Y, WANG C, XIE Y G, et al. Optical properties and polaritons of low symmetry 2D materials[J]. Photonics Insights, 2023, 2(1): R03
[21] LIU X L, ZHANG X, LIN M L, et al. Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials[J]. Chinese Physics B, 2017, 26(6): 067802.
[22] 赵迎春,任玲玲,魏伟胜,等.激光共聚焦显微拉曼光谱仪校准程序[J].光谱学与光谱分析,2015, 35(9):2544-2547.
[23] 公祥南,郭莉杰,周小元,等. HORIBAHR型激光拉曼光谱仪的使用和维护[J]. 实验室研究与探索,2017,36(10): 299-303.
[24] WU J, MAO N, XIE L, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy[J]. Angewandte Chemie International Edition, 2015, 54(8): 2366-2369.
[25] KIM J, LEE J U, LEE J, et al. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus[J]. Nanoscale, 2015, 7(44): 18708-18715.
[26] RIBEIRO H B, PIMENTA M A, DE MATOS C J S. Raman spectroscopy in black phosphorus[J]. Journal of Raman Spectroscopy, 2018, 49(1): 76-90.