硒化锑储钠机制的原位透射电镜研究
曹鑫亭,冉乐观,华 泽,曲双全,吴子祺,暴丽霞,杨 文*,张磊宁*,邵瑞文*
(1.北京理工大学 化学与化工学院,北京 100081;2.北京理工大学 智能机器人与系统高精尖创新中心,医学技术学院,北京100081;3.北京理工大学 分析测试中心,北京 100081)
摘 要 锑基材料因其高理论容量、低工作电压、高电子电导等优良特性而备受关注,有望成为大型储能钠离子电池的负极材料。本研究采用原位透射电子显微技术研究了Sb2Se3单晶嵌钠过程中的微观结构演化,详细揭示了Sb2Se3嵌钠过程中的反应机制,并阐明了反应界面处的电化学-力学耦合行为。Sb2Se3在钠化过程中经历了多个反应步骤,包括嵌入、转化以及合金化反应,最终产物被确认为Na2Se和Na3Sb。通过原位实验发现表界面上钠离子的迁移速率明显快于体相内部,导致反应前沿形成凹形的非晶-晶体界面。进一步的有限元分析表明凹形的相界面有助于减缓电化学过程中的机械力学失效。此外,界面附近存在位错和晶格扭曲,这些缺陷导致应力的释放,有利于维持钠化过程中的结构稳定性。这些发现阐明了Sb2Se3钠化过程中的原子级机制,为锑基材料钠电池的研发提供了重要的理论依据。
关键词 全固态钠电池; 硒化锑; 原位透射电子显微学
中图分类号:TM911;O646;TG115.21+5.3
文献标识码:A doi:10.3969/j.issn.1000-6281.2024.06.002
In situ TEM study on mechanism of sodium storage in antimony selenide
CAO Xinting1,RAN Leguan2,HUA Ze2,QU Shuangquan2,WU Ziqi2,BAO Lixia3,YANG Wen1*,ZHANG Leining1*,SHAO Ruiwen2*
(1. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081;2. Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China. 3. Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, China)
Abstract The antimony-based material, Sb2Se3, has garnered significant attention due to its outstanding properties, including high theoretical capacity, low operating voltage and high electronic conductivity, making it a promising anode material for large-scale sodium-ion batteries. This study utilized in situ transmission electron microscopy techniques to explore the microstructural evolution of Sb2Se3 single crystals during the sodiation process. It provided a detailed examination of the reaction mechanism and investigated the electrochemical-mechanical coupling behavior at the reaction interface. During sodiation, Sb2Se3 underwent several reaction stages, including insertion, conversion, and alloying, with the final products identified as Na2Se and Na3Sb. In-situ experiments revealed that the migration rate of Na+ at the surface-interface was significantly faster than in the bulk, leading to a concave amorphous-crystalline interface. Finite element analysis further suggested that this concave interfacial geometry helped alleviate mechanical failure during the electrochemical process. Additionally, the presence of dislocations and lattice distortions near the interface aided in stress relaxation, thereby enhancing structural stability during sodiation. These findings provide insights into the atomic-level mechanisms during the sodiation process of Sb2Se3 and offer a crucial theoretical foundation for the advancement of antimony-based materials for sodium batteries.
Keywords all solid-state sodium battery; Sb2Se3; in situ transmission electron microscopy
[1] LI W, ZHOU M, LI H M, et al. Carbon-coated Sb2Se3 composite as anode material for sodium ion batteries[J]. Electrochemistry Communications, 2015, 60: 74-77.
[2] CHEN P, WANG C Y, WANG T Y. Review and prospects for room-temperature sodium-sulfur batteries[J]. Materials Research Letters, 2022, 10(11):691-719.
[3] STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of The Electrochemical Society, 2001, 148(8): A803-A811.
[4] BALOGUN M S, LUO Y, QIU W, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon. 2016, 98: 162-178.
[5] GUO M Q, CHEN J J, LIU X, et al. Three-dimensional polypyrrole nano-network with Sb nanocrystals as electrode material for sodium-ion and lithium-ion batteries[J]. Journal of The Electrochemical Society, 2020, 167(2): 020527.
[6] LI W, WANG K L, CHENG S J, et al. A two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode[J]. Journal of Materials Chemistry A, 2017, 5(3): 1160-1167.
[7] NAM D-H, HONG K-S, LIM S-J, et al. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries[J]. Small, 2015, 11(24): 2885-2892.
[8] XIE F X, ZHANG L, GU Q F, et al. Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density[J]. Nano Energy, 2019, 60: 591-599.
[9] HWANG S M, KIM J, KIM Y, et al. Na-ion storage performance of amorphous Sb2S3 nanoparticles: Anode for Na-ion batteries and seawater flow batteries[J]. Journal of Materials Chemistry A, 2016, 4(46): 17946-17951.
[10] NAM K H, PARK C M. 2D layered Sb2Se3-based amorphous composite for high-performance Li- and Na-ion battery anodes[J]. Journal of Power Sources, 2019, 433: 126639.
[11] XIA L S, YANG Z D, TANG B, et al. Carbon nanofibers with embedded Sb2Se3 nanoparticles as highly reversible anodes for Na-ion batteries[J]. Small, 2021, 17(4): 2006016.
[12] OU X, YANG C H, XIONG X H, et al. A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: In situ X-ray diffraction study on a live sodiation/desodiation process[J]. Advanced Functional Materials, 2017, 27(13): 1606242.
[13] HOBSON T D C, DUROSE K. Protocols for the Miller indexing of Sb2Se3 and a non-X-ray method of orienting its single crystals[J]. Materials Science in Semiconductor Processing, 2021, 127: 105691.
[14] PATTINI F, RAMPINO S, MEZZADRI F, et al. Role of the substrates in the ribbon orientation of Sb2Se3 films grown by low-temperature pulsed electron deposition[J]. Solar Energy Materials and Solar Cells, 2020, 218: 110724.
[15] WANG X, WANG H, LI Q, et al. Antimony selenide nanorods decorated on reduced graphene oxide with excellent electrochemical properties for Li-ion batteries[J]. Journal of The Electrochemical Society, 2017, 164(13): A2922.
[16] SHAO R W, SUN Z F, W L, et al. Resolving the origins of superior cycling performance of antimony anode in sodium-ion batteries: a comparison with lithium-ion batteries[J]. Angewandte Chemie International Edition,2024, 63(11): e202320183.
[17] BOEBINGER M G, YEH D, XU M, et al. Avoiding fracture in a conversion battery material through reaction with larger ions[J]. Joule, 2018, 2(9): 1783-1799.
[18] SUN C H, DONG W K, YANG L, et al. Anisotropic lithium-ion migration and electro-chemo-mechanical coupling in Sb2Se3 single crystals[J]. Science China Materials, 2022, 65(10): 2657-2664.
[19] 皇甫磊磊, 翟阿敏, 田鹤, 等. 碳纳米纤维储钠机制的原位透射电镜研究[J]. 电子显微学报, 2019, 38(6): 593-599.
[20] CHENG Y, YAO Z P, ZHANG Q B, et al. In situ atomic-scale observation of reversible potassium storage in Sb2S3@Carbon nanowire anodes[J]. Advanced Functional Materials, 2020, 30(52): 2005417.
[21] DING Z P, YANG C, ZOU J, et al. Reaction mechanism and structural evolution of fluorographite cathodes in solid-state K/Na/Li Batteries[J]. Advanced Materials, 2021, 33(3): 2006118.
[22] ZHU C Y, SHAO R W, CHEN S L, et al. In situ visualization of interfacial sodium transport and electrochemistry between few-layer phosphorene[J]. Small Methods, 2019, 3(10): 1900061.
[23] QIAN J F, CHEN Y, WU L, et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries[J]. Chemical Communications, 2012, 48:7070-7072.
[24] CUI J, ZHENG H K, ZHANG Z L, et al. Origin of anomalous high-rate Na-ion electrochemistry in layered bismuth telluride anodes[J]. Matter, 2021, 4(4): 1335-1351.