[1] 郭可信. 金相学史话(1): 金相学的兴起[J]. 材料科学与工程, 2000, 18(4): 2-9.
[2] 郭可信. 金相学史话(2): β-Fe 的论战[J]. 材料科学与工程, 2001, 19(1): 6-12.
[3] 郭可信. 金相学史话(3): Fe-C 平衡图[J]. 材料科学与工程, 2001, 19(2): 2-8.
[4] 郭可信. 金相学史话(4): 合金钢的早期发展史[J]. 材料科学与工程, 2001, 19(3): 2-9.
[5] 郭可信. 金相学史话(5): X 射线金相学[J]. 材料科学与工程, 2001, 19(4): 3-8.
[6] 郭可信. 金相学史话(6): 电子显微镜在材料科学中的应用[J]. 材料科学与工程, 2002, 20(1): 5-10.
[7] 郭谊忠, 李帅, 王占鑫, 等. 单晶Pt中位错与非共格孪晶界反应的原位原子尺度观察[J]. 电子显微学报, 2022, 41(4): 363-369.
[8] 夏怡泽, 欧阳, 王飞, 等. 环境扫描透射电子显微镜原位揭示氢溢流促进TiO_2体缺陷修复机理[J]. 电子显微学报, 2022, 41(4): 370-380.
[9] 唐云龙, 王宇佳, 朱银莲, 等. 铁性氧化物界面应变耦合诱导极化拓扑结构[J]. 电子显微学报, 2022, 41(5): 520-527.
[10] 高猛, 许名权, 李傲雯, 等. 负载Ni/α-MoC催化剂活性位点的单原子精度STEM-EELS探究[J]. 电子显微学报, 2022, 41(6): 579-586.
[11] HOPPE W. Diffraction in inhomogeneous primary wave fields. 3. Amplitude and phase determination for nonperiodic objects [J]. Acta Crystall a-Crys, 1969, A 25: 508-515.
[12] HOPPE W. Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference [J]. Acta Crystall a-Crys, 1969, A 25: 495-501.
[13] SHIBATA N, FINDLAY S D, KOHNO Y, et al. Differential phase-contrast microscopy at atomic resolution [J]. Nat Phys, 2012, 8(8): 611-615.
[14] CLOSE R, CHEN Z, SHIBATA N, et al. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons [J]. Ultramicroscopy, 2015, 159: 124-137.
[15] LAZIC I, BOSCH E G T, LAZAR S. Phase contrast STEM for thin samples: Integrated differential phase contrast [J]. Ultramicroscopy, 2016, 160: 265-280.
[16] BURGER J, RIEDL T, LINDNER J K N. Influence of lens aberrations, specimen thickness and tilt on differential phase contrast STEM images [J]. Ultramicroscopy, 2020, 219: 113118.
[17] SHIBATA N, KOHNO Y, FINDLAY S D, et al. New area detector for atomic-resolution scanning transmission electron microscopy [J]. J Electron Microsc (Tokyo), 2010, 59(6): 473-479.
[18] TOYAMA S, SEKI T, KANITANI Y, et al. Quantitative electric field mapping in semiconductor heterostructures via tilt-scan averaged DPC STEM [J]. Ultramicroscopy, 2022, 238: 113538.
[19] OPHUS C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond [J]. Microsc Microanal, 2019, 25(3): 563-582.
[20] TATE M W, PUROHIT P, CHAMBERLAIN D, et al. High dynamic range pixel array detector for scanning transmission electron microscopy [J]. Microsc Microanal, 2016, 22(1): 237-249.
[21] PHILIPP H T, TATE M W, SHANKS K S, et al. Very-high dynamic range, 10 000 frames/second pixel array detector for electron microscopy [J]. Microsc Microanal, 2022, 28(2): 425-440.
[22] RYLL H, SIMSON M, HARTMANN R, et al. A pnCCD-based, fast direct single electron imaging camera for TEM and STEM [J]. J Instrum, 2016, 11(4): P04006.
[23] NORD M, WEBSTER R W, PATON K A, et al. Fast pixelated detectors in scanning transmission electron microscopy. Part I: Data acquisition, live processing, and storage [J]. Microsc Microanal, 2020, 26(4): 653-666.
[24] ERCIUS P, JOHNSON I, BROWN H, et al. The 4D camera–An 87 kHz frame-rate detector for counted 4D-STEM experiments [J]. Microsc Microanal, 2020, 26(S2): 1896-1897.
[25] JANNIS D, HOFER C, GAO C, et al. Event driven 4D STEM acquisition with a Timepix3 detector: Microsecond dwell time and faster scans for high precision and low dose applications [J]. Ultramicroscopy, 2022, 233: 113423.
[26] LEVIN B D A. Direct detectors and their applications in electron microscopy for materials science [J]. J Phys: Mater, 2021, 4(4): 042005.
[27] GERCHBERG R W, SAXTON W. Phase determination from image and diffraction plane pictures in the electron microscope [J]. Optik, 1971, 35(3): 275-284.
[28] GERCHBERG R W, SAXTON W. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik, 1972, 35: 237-246.
[29] FIENUP J R. Reconstruction of an object from the modulus of its Fourier transform [J]. Opt Lett, 1978, 3(1): 27-29.
[30] MIAO J, CHARALAMBOUS P, KIRZ J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens [J]. Nature, 1999, 400(6742): 342-344.
[31] NELLIST P D, MCCALLUM B C, RODENBURG J M. Resolution beyond the information limit in transmission electron-microscopy [J]. Nature, 1995, 374(6523): 630-632.
[32] RODENBURG J, BATES R. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution [J]. Philos Trans R Soc:A, 1992, 339(1655): 521-553.
[33] RODENBURG J, MCCALLUM B, NELLIST P. Experimental tests on double-resolution coherent imaging via STEM [J]. Ultramicroscopy, 1993, 48(3): 304-314.
[34] STRAUCH A, WEBER D, CLAUSEN A, et al. Live processing of momentum-resolved STEM data for first moment imaging and ptychography [J]. Microsc Microanal, 2021, 27(5): 1078-1092.
[35] BANGUN A, BAUMEISTER P F, CLAUSEN A, et al. Wigner distribution deconvolution adaptation for live ptychography reconstruction [J]. Microsc Microanal, 2023, 29(3): 994-1008.
[36] GAO C, HOFER C, JANNIS D, et al. Overcoming contrast reversals in focused probe ptychography of thick materials: An optimal pipeline for efficiently determining local atomic structure in materials science [J]. Appl Phys Lett, 2022, 121(8): 081906.
[37] RODENBURG J M, FAULKNER H M L. A phase retrieval algorithm for shifting illumination [J]. Appl Phys Lett, 2004, 85(20): 4795-4797.
[38] MAIDEN A M, RODENBURG J M. An improved ptychographical phase retrieval algorithm for diffractive imaging [J]. Ultramicroscopy, 2009, 109(10): 1256-1262.
[39] MAIDEN A M, HUMPHRY M J, RODENBURG J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach [J]. J Opt Soc Am A, 2012, 29(8): 1606-1614.
[40] MAIDEN A, JOHNSON D, LI P. Further improvements to the ptychographical iterative engine [J]. Optica, 2017, 4(7): 736.
[41] ODSTRČIL M, MENZEL A, GUIZAR-SICAIROS M. Iterative least-squares solver for generalized maximum-likelihood ptychography [J]. Opt Express, 2018, 26(3): 3108-3123.
[42] THIBAULT P, GUIZAR-SICAIROS M. Maximum-likelihood refinement for coherent diffractive imaging [J]. New J Phys, 2012, 14(6): 063004.
[43] THIBAULT P, DIEROLF M, MENZEL A, et al. High-resolution scanning X-ray diffraction microscopy [J]. Science, 2008, 321(5887): 379-382.
[44] GAO S, WANG P, ZHANG F, et al. Electron ptychographic microscopy for three-dimensional imaging [J]. Nat Commun, 2017, 8(1): 163.
[45] THIBAULT P, MENZEL A. Reconstructing state mixtures from diffraction measurements [J]. Nature, 2013, 494(7435): 68-71.
[46] CAO S, KOK P, LI P, et al. Modal decomposition of a propagating matter wave via electron ptychography [J]. Phys Rev A, 2016, 94(6): 063621.
[47] LI P, EDO T, BATEY D, et al. Breaking ambiguities in mixed state ptychography [J]. Opt Express, 2016, 24(8): 9038-9052.
[48] JONES L, YANG H, PENNYCOOK T J, et al. Smart Align—a new tool for robust non-rigid registration of scanning microscope data [J]. Adv Struct Chem Imaging, 2015, 1(1): 8.
[49] WANG Y, SUYOLCU Y E, SALZBERGER U, et al. Correcting the linear and nonlinear distortions for atomically resolved STEM spectrum and diffraction imaging [J]. Microscopy (Oxf), 2018, 67(suppl_1): i114-i122.
[50] NING S, XU W, MA Y, et al. Accurate and robust calibration of the uniform affine transformation between scan-camera coordinates for atom-resolved in-focus 4D-STEM datasets [J]. Microsc Microanal, 2022, 28(3): 622-632.
[51] O'LEARY C M, HAAS B, KOCH C T, et al. Increasing spatial fidelity and SNR of 4D-STEM using multi-frame data fusion [J]. Microsc Microanal, 2022, 28(4): 1417-1427.
[52] GUIZAR-SICAIROS M, FIENUP J R. Phase retrieval with transverse translation diversity: a nonlinear optimization approach [J]. Opt Express, 2008, 16(10): 7264-7278.
[53] ZHANG F, PETERSON I, VILA-COMAMALA J, et al. Translation position determination in ptychographic coherent diffraction imaging [J]. Opt Express, 2013, 21(11): 13592.
[54] XU W, LIN H, WANG H, et al. Reconstruction method of a ptychographic dataset with unknown positions [J]. Opt Lett, 2020, 45(16): 4634-4637.
[55] NING S, XU W, LOH L, et al. An integrated constrained gradient descent (iCGD) protocol to correct scan-positional errors for electron ptychography with high accuracy and precision [J]. Ultramicroscopy, 2023, 248: 113716.
[56] CHEN Z, JIANG Y, SHAO Y T, et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations [J]. Science, 2021, 372(6544): 826-831.
[57] SHA H, CUI J, YU R. Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction [J]. Sci Adv, 2022, 8(19): eabn2275.
[58] MASTERS B R. Superresolution optical microscopy [M]. Berlin: Springer, 2020.
[59] JIANG Y, CHEN Z, HAN Y, et al. Electron ptychography of 2D materials to deep sub-angstrom resolution [J]. Nature, 2018, 559(7714): 343-349.
[60] CHEN Z, ODSTRCIL M, JIANG Y, et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose [J]. Nat Commun, 2020, 11(1): 2994.
[61] CHEN Z, SHAO Y-T, JIANG Y, et al. Three-dimensional imaging of single dopants inside crystals using multislice electron ptychography [J]. Microsc Microanal, 2021, 27(S1): 2146-2148.
[62] CUI J, SHA H, YANG W, et al. Atomic-resolution imaging of magnetism via ptychographic phase retrieval [J]. 2022.DOI:10.48550/arXiv.2211.12008.
[63] LIU C, CUI J, CHENG Z, et al. Direct observation of oxygen atoms taking tetrahedral interstitial sites in medium-entropy body-centered-cubic solutions [J]. Adv Mater, 2023, 35(13): e2209941.
[64] SHA H, CUI J, LI J, et al. Ptychographic measurements of varying size and shape along zeolite channels [J]. Sci Adv, 2023, 9(11): eadf1151.
[65] ZHANG H, LI G, ZHANG J, et al. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography [J]. Science, 2023, 380(6645): 633-638.
[66] ZHOU L, SONG J, KIM J S, et al. Low-dose phase retrieval of biological specimens using Cryo-electron ptychography [J]. Nat Commun, 2020, 11(1): 2773.
[67] DING Z, GAO S, FANG W, et al. Three-dimensional electron ptychography of organic-inorganic hybrid nanostructures [J]. Nat Commun, 2022, 13(1): 4787.
[68] PEI X, ZHOU L, HUANG C, et al. Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer [J]. Nat Commun, 2023, 14(1): 3027.
[69] SHA H, MA Y, CAO G, et al. Sub-nanometer-scale mapping of crystal orientation and depth-dependent structure of dislocation cores in SrTiO3 [J]. Nat Commun, 2023, 14(1): 162.